Skip to main content
Log in

Heliobacterium sulfidophilum sp. nov. andHeliobacterium undosum sp. nov.: Sulfideoxidizing heliobacteria from thermal sulfidic springs

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Two new species of heliobacteria isolated from cyanobacterial mats of two alkaline sulfidic hot springs are formally described. Strains BR4 and BG29 are assigned to anoxygenic phototrophic bacteria of the familyHeliobacteriaceae, since they possess the unique properties of this taxon: strict anaerobiosis, formation of bacteriochlorophyllg, the lack of extensive intracytoplasmic membranes and chlorosomes, an unusual cell wall structure, and phylogenetic relatedness to the low G+C gram-positive eubacteria. Based on the 16S rDNA sequence similarity, strains BR4 and BG29 are assigned to the genusHeliobacterium and described as two new species of this genus:Heliobacterium sulfidophilum sp. nov. andHeliobacterium undosum sp. nov. The G+C content of the DNA is 51.3 mol % inHbt. sulfidophilum and 57.2-57.7 mol % inHbt. undosum. The cells ofHbt. sulfidophilum are rods, and the cells ofHbt. undosum are slightly twisted spirilla or short rods. Both new bacteria are motile by peritrichous flagella.Hbt. sulfidophilum produces endospores. The new bacteria are strict anaerobes growing photoheterotrophically on a limited range of organic compounds. In the dark, they can switch from photosynthesis to the slow fermentation of pyruvate. Biotin is required as a growth factor. Both species are highly tolerant to sulfide (up to 2 mM at pH 7.5) and oxidize it photoheterotrophically to elemental sulfur; photoautotrophic growth was not observed. The temperature optimal for growth ofHbt. sulfidophilum andHbt undosum is 30–35‡C, and the optimal pH is 7–8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madigan, M.T. and Ormerod, J.G., Taxonomy, Physiology, and Ecology of Heliobacteria,Anoxygenic Photosynthetic Bacteria, Blankenship, R.E., Madigan, M.T., and Bauer, C.E., Eds., Dordrecht: Kluwer, 1995, pp. 17–30.

    Google Scholar 

  2. Woese, C.R., Debrunner-Vossbrinck, B.A., Oyaizu, H., Stackebrandt, E., and Ludwig, W., Gram-Positive Bacteria: Possible Photosynthetic Ancestry,Science, 1985, vol. 229, pp. 762–765.

    Article  PubMed  CAS  Google Scholar 

  3. Starynin, D.A. and Gorlenko, V.M., Sulfide-oxidizing] Spore-forming Heliobacteria Isolated from a Hot Sulfide Spring,Mikwbiologiya, 1993, vol. 62, no. 3, pp. 556–563.

    CAS  Google Scholar 

  4. Starynin, D.A., Lysenko, A.M., and Gorlenko, V.M., Taxonomic Position of Heliobacteria Studied by DNA-] DNA Hybridization,Abstracts of the VIII Int. Symp. on Phototrophic Pwkaryotes (September 10–15, 1994,Urbino, Italy), 1994, p. 97.

  5. Kimble, L.K., Mandelco, L., Woese, C.R., and Madigan, M.T.,Heliobacterium modesticaldum, sp. nov., a Thermophilic Heliobacterium of Hot Springs and Volcanic Soils,Arch. Microbiol, 1995, vol. 163, pp. 259–267.

    Article  CAS  Google Scholar 

  6. Bryantseva, LA., Gorlenko, V.M., Kompantseva, E.I., Achenbach, L.A., and Madigan, M.T.,Heliorestis daurensis, gen. nov., sp. nov., an Alkaliphilic Rod-to-Coiledshaped Phototrophic Heliobacterium from a Siberian SodaLake, Arch. Microbiol, 1999, vol. 172, pp. 167–174.

    Article  CAS  Google Scholar 

  7. Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Tourova, T.P., Kuznetsov, B.B., and Osipov, G.A., Alkaliphilic HeliobacteriumHeliorestis baculata sp. nov. and Emended Description of the GenusHeliorestis, Arch. Microbiol. (in press).

  8. Pfennig, N. and Lippert, K.D.,Uber das Vitamin B12-Bidurfnis phototropher Schwefelbakterien,Arch. Mikrobiol, 1966, vol. 55, pp. 245–256.

    Article  CAS  Google Scholar 

  9. Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu.,Metody analiza prirodnykh vod (Methods for the Analysis of Natural Waters), Moscow: Nedra, 1970, p. 118.

    Google Scholar 

  10. Triiper, H.G. and Schlegel, H.G., Sulphur Metabolism inThiorhodaceae: 1. Quantitative Measurements of Growing Cells ofChromatium okenii, Antonie van Leeuwenhoek, 1964, vol. 30, pp. 225–238.

    Article  Google Scholar 

  11. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,Nature, 1970, vol. 227, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  12. Dice, L.R., Measurement of the Amount of Ecologic Association between Species,Ecology, 1945, vol. 26, pp. 297–302.

    Article  Google Scholar 

  13. Marmur, J.A., Procedure for the Isolation of Deoxyribonucleic Acid from Microorganisms,J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  14. Owen, R.J., Hill, L.R., and Lapage, S.P., Determination of DNA Base Composition from Melting Profiles in Dilute Buffers,Biopolymers, 1961, vol. 7, pp. 503–516.

    Article  Google Scholar 

  15. De Lay, J., Cattoir, H., and Reynaerts, A., The Quantitative Measurement of DNA-DNA Hybridization from Renaturation Rates,Eur. J. Biochem., 1970, vol. 12, pp. 133–142.

    Article  Google Scholar 

  16. Zhilina, T.N., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., and Lysenko, A.M.,Orenia sivashensis sp. nov., a New Moderately Halophilic Anaerobic Bacterium from Lake Sivash Lagoons,Mikwbiologiya, 1999, vol. 68, no. 4, pp. 519–527.

    Google Scholar 

  17. Van de Peer, Y. and De Wachter, R., TREECON for Windows: A Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment,Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  CAS  Google Scholar 

  18. Taikaichi, S., Inoue, K., Akaike, M., Kobayashi, M., Oh-Oka, H., and Madigan, M.T., The Major Carotenoid in All Species of Heliobacteria is the C30 Carotenoid 4,4’-Diaponeurosporene, Not Neurosporene,Arch. Microbiol, 1997, vol. 168, pp. 277–281.

    Article  Google Scholar 

  19. Beer-Romero, P., Favinger, J.L., and Gest, H., Distinctive Properties of Bacilliform Photosynthetic Heliobacteria,FEMS Microbiol. Lett., 1988, vol. 49, pp. 451–454.

    Article  CAS  Google Scholar 

  20. Aase, B., Jantzen, E., Bryn, K., and Ormerod, J., Lipids of Heliobacteria Are Characterised by a High Proportion of Monoenoic Fatty Acids with Variable Double Bond Positions,Photosynthesis Res., 1994, vol. 41, pp. 67–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Gorlenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryantseva, I.A., Gorlenko, V.M., Tourova, T.P. et al. Heliobacterium sulfidophilum sp. nov. andHeliobacterium undosum sp. nov.: Sulfideoxidizing heliobacteria from thermal sulfidic springs. Microbiology 69, 325–334 (2000). https://doi.org/10.1007/BF02756742

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02756742

Key words

Navigation