Advertisement

High Temperature

, Volume 38, Issue 3, pp 405–412 | Cite as

Volume changes during melting and heating of silicon and germanium melts

  • V. M. Glazov
  • O. D. Shchelikov
Thermophysical Properties of Materials

Abstract

The temperature dependence of the density of silicon and germanium in the neighborhood of the crystal-melt phase transition is investigated by an improved thermometric method. Changes in volume occurring during transition from the solid to the liquid state are estimated. It is shown that the density increases in the process of crystal-melt phase transition and, accordingly, the specific volume decreases in both silicon and germanium; an increase in pressure noticeably decreases the melting points of both investigated substances. A linear temperature dependence of density in the liquid phase is obtained. The strength characteristics of interatomic bonds are estimated such as the characteristic Debye temperatures and root-mean-square dynamic displacements of atoms from the equilibrium position in the short-range order structure of the melts of the investigated substances. It is shown that the melting process noticeably weakens the cohesive forces between particles and substantially changes the pattern of their oscillation spectrum.

Keywords

Germanium Thermal Expansion Coefficient Interatomic Bond Dynamic Displacement Liquid Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glazov, V.M., Chizhevskaya, S.N., and Glagoleva, N.N.,Zhidkie poluprovodniki (Liquid Semiconductors), Moscow: Nauka, 1967.Google Scholar
  2. 2.
    Glazov, V.M., Chizhevskaja, C.N., and Glagoleva, N.N.,Liquid Semicoductors, New York: Plenum, 1969.CrossRefGoogle Scholar
  3. 3.
    Regel’, A.R. and Glazov, V.M.,Fizicheskie svoistva elektronnykh rasplavov (The Physical Properties of Electronic Melts), Moscow: Nauka, 1980.Google Scholar
  4. 4.
    Gel’d, P.V. and Gertman, Yu.M.,Fiz. Met. Metalloved., 1960, vol. 10, p. 793.Google Scholar
  5. 5.
    Vatolin, N.A. and Esin, O.A.,Fiz. Met. Metalloved., 1963, vol. 16, p. 936.Google Scholar
  6. 6.
    Baum, B.A. and Gel’d, P.V., inPoverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh (Surface Phenomena in Melts and in Solid Phases Arising from Those Melts), Nalchik: Kabardino-Balkarskoe Knizhnoe Izd., 1965, p. 293.Google Scholar
  7. 7.
    Abu, K., Vertman, A.A., and Samarin, A.M.,Izv. Akad. Nauk SSSR Met., 1996, no. 3, p. 19.Google Scholar
  8. 8.
    Glazov, V.M., Investigation into the Physicochemical Analysis of Semiconductors in the Liquid Phase,Doctoral (Chem.) Dissertation, Moscow: Inst. of General and Inorganic Chemistry, USSR Acad. Sci., 1966.Google Scholar
  9. 9.
    Dzhemilev, N.K., Popel’, S.I., and Tsarevskii, B.V.,Fiz. Met. Metalloved., 1964, vol. 18, p.83.Google Scholar
  10. 10.
    Elyutin, V.P., Kostikov, V.I., and Levin, V.Ya., Surface Tension and Density of Silicon-Based Melts, inFizicheskaya khimiya poverkhnostnykh yavlenii v rasplavakh (Physical Chemistry of Surface Phenomena in Melts), Kiev: Naukova Dumka, 1971, p. 153.Google Scholar
  11. 11.
    Khilya, G.P. and Ivashchenko, Yu.N.,Dokl. Akad. Nauk Ukr.SSR, 1973, no. l,p. 69.Google Scholar
  12. 12.
    Koniger, A. and Nagel, G.,Giesserei Tech. Wiss. Beih., 1961, vol. 13, p. 57.Google Scholar
  13. 13.
    Logan, R.A. and Bond, B.Z.,J. Appl. Phys., 1959, vol. 30, no. 3, p. 322.CrossRefADSGoogle Scholar
  14. 14.
    Lucas, L.D.,Mem. Sci., Rev. Metall., 1964, vol. 61, no. 1, p. 1.Google Scholar
  15. 15.
    Shergin, L.M., The Temperature Dependence of the Density and Surface Tension of Iron-Nickel-Silicon and Iron-Cobalt-Silicon Melts,Cand. Sci. (Tech.) Dissertation, Sverdlovsk, 1970.Google Scholar
  16. 16.
    Levin, E.S., Gel’d, P.V., and Shchipacheva, L.S.,Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall, 1968, no. 4, p. 77.Google Scholar
  17. 17.
    Mokrovskii, N.P. and Regel’,A.R., Zh. Tekh. Fiz., 1952, vol. 22, no. 7, p. 1281.Google Scholar
  18. 18.
    Tavadze, F.N., Kekua, M.G., Khantadze, D.V., and Tservadze, T.G., The Temperature Dependence of the Surface Tension of Liquid Germanium and Silicon, inPoverkhnostnye yavleniya v rasplavakh (Surface Phenomena in Melts), Kiev: Naukova Dumka, 1968, p. 159.Google Scholar
  19. 19.
    Khilya, G.P., Ivashchenko, Yu.N., and Eremenko, V.N., The Investigation of the Temperature Dependence of the Free Surface Energy and Density Copper-Germanium Liquid Alloys, inFizicheskaya khimiya poverkhnostnykh yavlenii v rasplavakh (Physical Chemistry of Surface Phenomena in Melts), Kiev: Naukova Dumka, 1971, p. 149.Google Scholar
  20. 20.
    Lucas, L.D. and Urbein, G.,C. R. Acad. Sci., 1962, vol. 255, no. 19, p. 241.Google Scholar
  21. 21.
    Martin-Garin, L., Gomez, M., and Desre, P.,J. Less Common Met., 1975, vol. 41, p. 65.CrossRefGoogle Scholar
  22. 22.
    Floka, L.I., The Specific Volumes of Iron-Based Liquid Binary Alloys and Their Surface Properties at the Interfaces with Gas and Graphite,Cand. Sci. (Tech.) Dissertation, Kiev, 1972.Google Scholar
  23. 23.
    Sasaki, H., Tokizaki, E., Terashima, K., and Kimura, S.,Jpn. J. Appl. Phys., 1994, vol. 33, p. 3803.CrossRefADSGoogle Scholar
  24. 24.
    Sasaki, H., Tokizaki, E., Terashima, K., and Kimura, S.,Jpn. J. Appl. Phys., 1994, vol. 33, p. 6078.CrossRefADSGoogle Scholar
  25. 25.
    Kawanishi, S., Sasaki, H., Terashima, K., and Kimura, S.,Jpn. J. Appl. Phys., 1995, vol. 34, p. 1509.CrossRefADSGoogle Scholar
  26. 26.
    Ikari, A., Sasaki, H., Tokizaki, E.,et al., Jpn. J. Appl Phys., 1995, vol. 34, p. 1017.CrossRefADSGoogle Scholar
  27. 27.
    Stankus, S.V., Khairulin, R.A., and Tyagel’skii, P.V., The Thermal Properties of Silicon and Germanium in Condensed State,5-ya Mezhdunarodnaya konferentsiya “Termodinamika i materialovedenie poluprovodnikov” (5th Int. Conf on Semiconductor Thermodynamics and Materials Studies), Moscow: MIET (Moscow Inst. of Electronic Engineering), 1997, p. 111.Google Scholar
  28. 28.
    Stankus, S.V., Khairulin, R.A., and Tyagel’skii, P.V.,Teplofiz. Vys. Temp., 1999, vol. 37, no. 4, p. 559 (High Temp. (Engl. transi.), vol. 37, no. 4, p. 559).Google Scholar
  29. 29.
    Rhim, W.K., Chung, S.K., Rulison, A.J., and Spjut, R.E.,Int. J. Thermophys., 1997, vol. 18, no. 2, p. 459.CrossRefADSGoogle Scholar
  30. 30.
    Rhim, W.K., Chung, S.K., Barber, D.,et al., Rev. Sci., Instrum., 1993, vol. 64, p. 2961.CrossRefADSGoogle Scholar
  31. 31.
    Petrov, D.A. and Glazov, V.M.,Zavod. Lab., 1958, vol. 24, no. 1, p. 34.Google Scholar
  32. 32.
    Regel’, A.R. and Glazov, V.M.,Zakonomernostiformirovaniya struktury elektronnykh rasplavov (Regularities of Formation of the Structure of Electronic Melts), Moscow: Nauka, 1982.Google Scholar
  33. 33.
    Regel’, A.R. and Glazov, V.M.,Fiz, Tekh. Poluprovodn., 1983, vol. 17, no. 10, p. 1729.Google Scholar
  34. 34.
    Glazov, V.M., Kol’tsov, V.B., and Kurbatov, V.A.,Fiz, Tekh. Poluprovodn., 1986, vol. 20, no. 12, p. 2159.Google Scholar
  35. 35.
    Regel’, A.R., Glazov, V.M., and Kim, S.G.,Fiz. Tekh. Poluprovodn., 1986, vol. 20, no. 8, p. 1353.Google Scholar
  36. 36.
    Glazov, V.M., Kim, S.G., and Suleimenov, T.,Fiz. Tekh. Poluprovodn., 1988, vol. 22, no. 11, p. 1943.Google Scholar
  37. 37.
    Glazov, V.M. and Kim, S.G.,Fiz, Tekh. Poluprovodn., 1990, vol. 24, no. 10, p. 1790.Google Scholar
  38. 38.
    Auerbach, F.,Die sieben Anomalien des Wassers. Translated under the titleSem’anomalii vody, Afanas’ev, A.R, Ed., Petrograd: Nauchnoe Knigoizdatel’stvo, 1919.Google Scholar
  39. 39.
    Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D., Thermal Expansion: Metallic Elements and Alloys, inThermophysical Properties of Matter, New York, 1975, vol. 12.Google Scholar
  40. 40.
    Smakula, A. and Sils, V,Phys. Rev., 1955, vol. 99, no. 6, p. 1744.CrossRefADSGoogle Scholar
  41. 41.
    Patterson, J.B. and Devis, R.S.,J. Res. Natl. Bur. Stand., 1985, vol. 90, no. 4, p. 285.CrossRefGoogle Scholar
  42. 42.
    Okaji, M.,Int. J. Thermophys, 1988, vol. 9, no. 6, p. 1101.CrossRefADSGoogle Scholar
  43. 43.
    Okada, Y. and Tokumaru, Y.,J. Appl. Phys., 1984, vol. 56, no. 2, p. 314.CrossRefADSGoogle Scholar
  44. 44.
    Layarman, A., Klement, W., and Kennedy, G.C.,Phys. Rev., 1963, vol. 130, no. 6, p. 2277.CrossRefADSGoogle Scholar
  45. 45.
    Stankus, S.V., Variation of the Density of Elements upon Melting: General Regularities,Preprint of Inst. of Thermophysics, Siberian Div., Russ. Acad. Sci., Novosibirsk, 1991, no. 257.Google Scholar
  46. 46.
    Glazov, V.M., Kasymova, M., and Regel’, A.R.,Fiz. Tekh. Poluprovodn., 1979, vol. 13, no. 10, p. 2049.Google Scholar
  47. 47.
    Thormeier, K.,Die Loslichkeit von Edelgasen im Reaktorkuhlmittel Natrium und sich daraus ergebende Sicherheitsaspekte. Report KEK 1166, Karlsruhe: Kernforschungszentrum, 1970.Google Scholar
  48. 48.
    Sirota, N.N. and Chizhevskaya, S.N., Characteristic Temperatures of Mg2Si, Mg2Sn, and Si., inFizika ifiziko-khimicheskii analiz (Physics and Physicochemical Analysis), Moscow: Gosstroiizdat, 1957, p. 157.Google Scholar
  49. 49.
    Glazov, V.M., Pashinkin, A.S., Koshchenko, V.I., and Demidenko, A.F.,Zh. Fiz. Khim., 1971, vol. 45, no. 11, p. 280.Google Scholar
  50. 50.
    Sirota, R.R.,Izv. Sekt. Fiz. Khim. Anal. Inst. Obshch. Neorg. Khim. Akad. Nauk SSSR, 1952, vol. 21, p. 90.Google Scholar
  51. 51.
    Frantsevich, I.N., Elastic Constants of Metals and Alloys, inVoprosy poroshkovoi metallurgii i prochnosti materialov (Problems in Powder Metallurgy and Strength of Materials), Kiev: AN USSR (Acad. Sci. Ukrainian SSR), 1956, issue 3, p. 3.Google Scholar
  52. 52.
    Regel’, A.R. and Glazov, V.M.,Periodicheskii zakon i fizicheskie svoistva elektronnykh rasplavov (The Periodic Law and the Physical Properties of Electronic Melts), Moscow: Nauka, 1978.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. M. Glazov
    • 1
  • O. D. Shchelikov
    • 1
  1. 1.Moscow Institute of Electronic Engineering (Technical University)ZelenogradRussia

Personalised recommendations