Skip to main content
Log in

Hydraulically sectioned columnar extractor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A hydraulically sectioned columnar extractor is considered, which ensures ordered phase transport. The hydraulic and mass-transfer parameters of the extractor are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

[l + (FTx/m)]/[1 + (Tx/m)]

a :

specific interface area, m2/m3

D c :

column diameter, m

D :

coefficient of molecular diffusion in the dispersed phase, m2/s

d con,d st,d circ :

diameters of the cone, stirrer, and circulation barrel, respectively, m

d 32 :

mean volume-surface drop diameter, m

E 1,E 2 :

longitudinal-dispersion coefficient of the continuous phase in a single- and two-phase flows, respectively, m2/s

E t,E ax :

turbulent and axial components of the longitudinal-dispersion coefficient, m2/s

E eff :

effective longitudinal diffusion coefficient in the circuit, m2/s

F :

heat-transfer (extraction) factor

g = 9.81:

free fall acceleration, m/s2

h :

height equivalent to a theoretical stage, m

h sec,h con h circ :

section, cone, and circulation-barrel heights, respectively, m

i :

cell number along the raffinate flow

K N :

power coefficient of the stirrer

K x :

average surface mass-transfer coefficient, m/s

L :

height of the working zone of the extractor, m

l :

characteristic size of the circuit, m

m :

number of perfectly mixed cells

m distr :

distribution coefficient

N :

power consumed by the stirrer, W

n :

rotational speed of the stirrer, s-1

Q :

total specific capacity, m3/(m2 h)

R :

circulation factor

r :

stirring radius, m

T x :

observed total number of raffinate-transfer units

t circ :

circulation time, s

u :

apparent flow velocity, m3/(m2 s); velocity of the direct flow of the continuous phase, m/s

u circuit :

flow velocity in the circuit, m/s

u st :

peripheral velocity of the stirrer, m/s

u circ :

circulation flow velocity, m/s

u s :

relative velocity of the phases, m/s

V :

volume of an extractor section, m3

V*:

pumping capacity of the stirrer, m3/s

V :

phase flow rate, m3/s; specific phase load, m3/(m2 h)

w :

velocity of the reverse flow in the circuit, m/s

x 1,x fin,x eq :

initial, final, and equilibrium concentrations, respectively, of the desired component in the raffinate, g/1

x i y l :

current concentrations of the desired component in the raffinate and extract, respectively, g/1

y in :

initial concentration of the desired component in the extract, g/1

z :

relative height of the working zone of the extractor

ψi, Γl :

dimensionless concentration of the desired component in the raffinate and extract, respectively

ε:

specific power consumption, W/m3

μ:

dynamic viscosity of a phase, Pa s

v :

kinematic viscosity of a phase, m2 s

ρ:

density, kg/m3

σ:

interfacial tension, N/m

Φdisp, Φcon, Φout :

retention capacity in the dispersion zone, inside the cone, and outside the section, respectively, m3/m3

ω = πn/30:

angular velocity of the stirrer, s-1

Pej =u cont L/E j :

Peclet number for the continuous phase (j= 1,2)

Pe circuit=u circuit L/E eff :

Peclet number for the circuit

Pedisp =u sd32/D :

modified Peclet number for the dispersed raffinate

Prdiff :

diffusion Prandtl number

Re =u sd32/vdisp :

modified Reynolds number for the dispersed raffinate

Rest =nd st 2 ρ/u:

Reynolds number for the stirrer

Shdisp =K xd32/D :

Sherwood number for the dispersed raffinate

d:

dispersed phase

cont:

continuous phase

lim:

limiting

em:

emulsion

References

  1. Treybal, R.,Liquid Extraction, New York: McGraw-Hill, 1963.

    Google Scholar 

  2. Osnovy zhidkostnoi ekstraktsii (Fundamentals of Liquid Extraction), Yagodin, G.M., Ed., Moscow: Khimiya, 1981.

    Google Scholar 

  3. Pebalk, V.L., Hydraulics and Mass Transfer in Sectional Extractors with Mechanical Stirring,Doctoral (Eng.) Dissertation, Moscow: Lomonosov Inst. Fine Chem. Technol., 1970.

    Google Scholar 

  4. Varfolomeev, B.G., Dispersion of Liquids and Energy Intensity and Efficiency of Box-Type Extractors,Cand. Sci. (Eng.) Dissertation, Moscow: Lomonosov Inst. Fine Chem. Technol., 1973.

    Google Scholar 

  5. Strenk, F.,Peremeshivanie i apparaty s meshalkami (Stirring and Stirred Apparatuses), Leningrad: Khimiya, 1975.

    Google Scholar 

  6. Kostanyan, A.E., Dil’man, V.V., and Vasin, A.A., Dwell Time for a Flow Circuit,Teor. Osn. Khim. Tekhnol, 1982, vol. 16, no. 6, p. 790.

    CAS  Google Scholar 

  7. Tsiklauri, N.G., Hydraulic and Mass-Transfer Characteristics of a Sectional Extractor with an Organized Flow Structure,Cand. Sci. (Eng.) Dissertation, Moscow: Lomonosov Inst. Fine Chem. Technol., 1987.

    Google Scholar 

  8. Gel’perin, N.I., Pebalk, V.L., and Kostanyan, A.E.,Struktura potokov i effektivnost’ kolonnykh apparatov khimicheskoi promyshlennosti (Flow Structure and Efficiency of Industrial Columnar Apparatuses), Moscow: Khimiya, 1977.

    Google Scholar 

  9. Brounshtein, B.I. and Zheleznyak, A.S.,Fizikokhimicheskie osnovy zhidkostnoi ekstraktsii (Physicochemical Foundations of Liquid Extraction), Moscow: Khimiya, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varfolomeev, B.G., Pebalk, V.L., Kostanyan, A.E. et al. Hydraulically sectioned columnar extractor. Theor Found Chem Eng 34, 255–262 (2000). https://doi.org/10.1007/BF02755973

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02755973

Keywords

Navigation