Advertisement

aequationes mathematicae

, Volume 54, Issue 1–2, pp 205–220 | Cite as

Paul Erdős, 1913–1996

  • Vera T. Sós
Obituaries
  • 64 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alon, N. andSpencer, J.,The Probabilistic Method. Wiley, New York, 1992.zbMATHGoogle Scholar
  2. [2]
    Babai, L.,In and out of Hungary, Paul Erdős, his friends and times. In:Combinatorics, Paul Erdős is 80, Vol. 2 (Eds. Miklós, Sós, Szőnyi). Bolyai Soc. Math. Stud. 2, Budapest, 1996, 7–96.Google Scholar
  3. [3]
    Bollobás, B.,Extremal Graph Theory. Academic Press, London, 1978.zbMATHGoogle Scholar
  4. [4]
    Bollobás, B.,Random Graph Theory, Academic Press, London, 1985.Google Scholar
  5. [5]
    Bollobás, B.,Paul Erdős—Life and work. In:The Mathematics of P. Erdős,Vol. I (Eds. Graham and Nešetrřil), Algorithms and Combinatorics, 13, Springer, Berlin, 1997, 1–41.Google Scholar
  6. [6]
    Dvoretzky, A., Erdős, P. andKakutani, S.,Multiple points of paths of Brownian motion in the plane, Bull. Res. Council Israel3 (1954), 364–371.MathSciNetGoogle Scholar
  7. [7]
    Edelsbrunner, H.,Algorithms in Combinatorial Geometry. EATCS Monographs in Theoretical Computer Science, 10. Springer, Berlin, 1987.zbMATHGoogle Scholar
  8. [8]
    Elliott, P. D. T.,Probabilistic Number Theory,Vols. 1–2 (Grundlehren Math. Wiss. 239, 240), Springer, New York, 1980.zbMATHGoogle Scholar
  9. [9]
    Erdélyi, T., Szabados J. andVértesi, P., to appear in J. Approx. Theory.Google Scholar
  10. [10]
    Erdős, P.,On the difference of consecutive primes, Quart. J. Math. Oxford Ser.6 (1935), 124–128.CrossRefGoogle Scholar
  11. [11]
    Erdős, P.,On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci.35 (1949), 374–384.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Erdős, P.,An interpolation problem associated with the continuum hypothesis. Michigan Math. J.11 (1964), 9–10.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Erdős, P.,On the law of the iterated logarithm, Ann. of Math.43 (1942), 419–436.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Erdős, P.,On sets of distances of n points. Amer. Math. Monthly53 (1946), 248–250.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Erdős, P.,Some applications of probability methods to number theory, Successes and limitations. In Capocelli, R. (Ed.): Sequences (Naples/Positano, 1988). Springer, New York, 1990, 182–194.Google Scholar
  16. [16]
    Erdős, P.,On some of my favourite theorems. In:Combinatorics, Paul Erdős is 80, Vol. 2 (Eds. Miklós, Sós, Szőnyi), Bolyai Soc. Math. Stud. 2, Budapest, 1996, 97–132.Google Scholar
  17. [17]
    Erdős, P.,Some of my favorite problems and results. In:The Mathematics of P. Erdős,Vol. I (Eds. Graham and Nešetřil), Algorithms and Combinatorics 13. Springer, Berlin, 1997, 47–67.Google Scholar
  18. [18]
    Erdős, P. andFuchs, W. H. J.,On a problem of additive number theory. J. London Math. Soc.31 (1956), 67–73.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Erdős, P. andGrünwald, T.,On polynomials with only real roots. Ann. of Math.40 (1939), 537–548.CrossRefMathSciNetGoogle Scholar
  20. [20]
    Erdős, P., Hajnal, A., Máté, A. andRado, R.,Combinatorial Set Theory: Partition Relations for Cardinals. Studies in Logic and the Foundations of Mathematics 106. North-Holland Publishing Co., Amsterdam-New York, 1984.Google Scholar
  21. [21]
    Erdős, P., Ko, C. andRado, R.,Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser.12 (1961), 313–320.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Erdős, P. andRado, R.,A partition calculus in set theory. Bull. Amer. Math. Soc.62 (1956), 427–489.MathSciNetGoogle Scholar
  23. [23]
    Erdős, P. andRado, R.,Intersection theorems for systems of sets. J. London Math. Soc.35 (1960), 85–90.CrossRefMathSciNetGoogle Scholar
  24. [24]
    Erdős, P. andRényi, A.,On the evolution of random graphs. Magyar-Tud.-Akad.-Mat.-Int-Közl.5 (1960), 17–61.Google Scholar
  25. [25]
    Erdős, P. andPurdy, G.,Extremal problems in Combinatorial Geometry, Ch. 17.Handbook of Combinatorics,Vol. I (Eds. Graham, Lovász, Grötschel), Elsevier Sci. B.V., Amsterdam, 1995.Google Scholar
  26. [26]
    Erdős, P. andSimonovits, M.,A limit theorem in graph theory. Studia Sci. Math. Hungar.1 (1966), 51–57.MathSciNetGoogle Scholar
  27. [27]
    Erdős, P. andSpencer, J.,Probabilistic methods in combinatorics. Academic Press, New York, 1984.Google Scholar
  28. [28]
    Erdős, P. andStone, H.,On the structure of linear graphs. Bull. Amer. Math. Soc.52 (1946), 1087–1091.MathSciNetCrossRefGoogle Scholar
  29. [29]
    Erdős, P. andSzalay, M.,On some problems of the statistical theory of partitions. In:Number Theory,Vol. I (Budapest, 1987) (Eds. K. Györy and G. Halász), Colloq. Math. Soc. János Bolyai 51. North-Holland, Amsterdam, 1990.Google Scholar
  30. [30]
    Erdős, P. andSzekes, M.,A combinational problem in geometry. Compositio Math.2 (1935), 463–470.MathSciNetGoogle Scholar
  31. [31]
    Erdős, P. andTurán, P.,On interpolation, I. Quadrature and mean convergence in the Lagrange interpolation. Ann. of Math.38 (1937), 142–155.CrossRefMathSciNetGoogle Scholar
  32. [32]
    Erdős, P. andTurán, P.,On a problem of Sidon in additive number theory and on some related problems. J. London Math. Soc.16 (1941), 212–215.CrossRefMathSciNetGoogle Scholar
  33. [33]
    Erdős, P. andTurán, P.,On a problem in the theory of uniform distribution, I–II. Proc. Kon. Nederl. Akad. Wetensch.51 (1948), 370–413.Google Scholar
  34. [34]
    Erdős, P. andTurán, P.,On some new questions on the distribution of prime numbers, Bull. Amer. Math. Soc.54 (1948), 271–278.Google Scholar
  35. [35]
    Erdős, P. andTurán, P.,On some problems of a statistical group theory, VII. Collection of articles dedicated to the memory of A. Rényi, I. Period. Math. Hungar.2 (1972), 149–163.CrossRefMathSciNetGoogle Scholar
  36. [36]
    Graham, R. L., to appear in Combinatorica.Google Scholar
  37. [37]
    Hadwiger, H., Debrunner, H. andKlee, V.,Combinatorial geometry in the plane. Holt, Reinhart and Winston, New York, 1964.Google Scholar
  38. [38]
    Hajnal, A.,Paul Erdős’s set theory. In:The Mathematics of Paul Erdős,Vol. II (Eds. Graham and Nešetřil). Algorithms and Combinatorics, 14. Springer, Berlin, 1997, 352–393.Google Scholar
  39. [39]
    Halberstam, H. andRoth, K. F.,Sequences. Clarendon Press, Oxford, 1966.zbMATHGoogle Scholar
  40. [40]
    Karonski, M. andRuczinski, A.,The origins of the theory of random graphs I. In:The Mathematics of Paul Erdős, Vol. II (Eds. Graham and Nešetřil), Algorithms and Combinatorics 13. Springer Verlag (1997), 311–336.Google Scholar
  41. [41]
    Losonczi, L.,Paul Erdős on functional equations: Contributions and impact. Aequationes Math.54 (1997), 221–233.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    Pach, J. andAgarval, P.,Combinatorial Geometry, Wiley Interscience Series in Discrete Math. and Optimization. Wiley, New York, 1995.zbMATHGoogle Scholar
  43. [43]
    Pomerance, K. andSárközy, A.,Combinatorial Number Theory, Ch. 20.Handbooks of Combinatorics,Vol. I (Ed. Graham, Lovász, Grötschel), Elsevier Sci. B. V., Amsterdam, 1995.Google Scholar
  44. [44]
    Ruzsa, I. Z., to appear in J. of Number Theory.Google Scholar
  45. [45]
    Sárközy, A., to appear in Acta Arithmetica.Google Scholar
  46. [46]
    Schinzel, A.,Arithmetical properties of polynomials. In:The Mathematics of Paul Erdős,Vol. I (Eds. Graham and Nešetřil). Algorithms and Combinatorics 13. Springer, Berlin, 1997, 151–154.Google Scholar
  47. [47]
    Selberg, A.,An elementary proof of prime number theorem. Ann. of Math.50 (1949), 305–313.CrossRefMathSciNetGoogle Scholar
  48. [48]
    Simonovits, M.,Extremal Graph Theory. In:Selected Topics in Graph Theory (Eds. Beineke and Wilson). Academic Press, London, New York, San Francisco, 1983, 161–200.Google Scholar
  49. [49]
    Simonovits, M.,Paul Erdős’ influence on extremal graph theory. In:The Mathematics of Paul Erdős,Vol. II (Eds. Graham and Nešetřil). Algorithms and Combinatorics 14. Springer, Berlin, 1997, 148–192.Google Scholar
  50. [50]
    Turán, P.,Paul Erdős is 50, Matematikai Lapok14 (1963), 1–28 (in Hungarian) (see also the Collected Papers of Paul Turán, Akadémiai Kiadó Budapest, in English).MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • Vera T. Sós
    • 1
  1. 1.Mathematical Institute of theHungarian Academy of SciencesBudapestHungary

Personalised recommendations