Advertisement

aequationes mathematicae

, Volume 54, Issue 1–2, pp 31–43 | Cite as

Jordan *-derivation pairs and quadratic functionals on modules over *-rings

  • B. ZalarEmail author
Research Papers

Summary

We give a new simple proof of Šemrl’s recent representation theorem for quasi-quadratic functions acting on unital modules and then show that our approach also gives a certain extension of Šemrl’s result.

This paper is intended to point out the usefulness of the ternary point of view even when we are dealing with problems which involve only binary structure.

Mathematics Subject Classification (1991)

Primary 39B52 16W25 15A63 Secondary 16W10 16D10 46C15 46L05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Aczél,The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel basis. Glasnik Mat.20 (1965), 65–72.zbMATHGoogle Scholar
  2. [2]
    D. Amir,Characterization of inner product spaces. [Operator Theory: Advances and Applications, Vol. 20]. Birkhäuser Verlag, Basel, 1986.Google Scholar
  3. [3]
    J. A. Baker,On quadratic functionals continuous along rays. Glasnik Mat.23 (1968), 215–229.Google Scholar
  4. [4]
    M. Brešar andB. Zalar,On the structure of Jordan *-derivations. Colloquium Math63 (1992), 163–171.Google Scholar
  5. [5]
    P. W. Cholewa,Remarks on the stability of functional equations. Aequationes Math.27 (1984), 76–86.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    T. M. K. Davison,A functional equation for quadratic forms. Aequationes Math.21 (1980), 1–7.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    T. M. K. Davison,Journal derivations and quasi-bilinear forms. Comm. Algebra12 (1984), 23–32.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    T. M. K. Davison,Röhmel equation for quadratic forms. Aequationes Math.34 (1987), 78–81.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    B. R. Ebanks,On the equation F(x)+M(x)G(x −1)=0 on K n. Linear Algebra Appl.125 (1989), 1–17.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Ger,Some remarks on quadratic functions. Glasnik Mat.23 (1988), 315–330.MathSciNetGoogle Scholar
  11. [11]
    A. M. Gleason,The definition of a quadratic from. Amer. Math. Monthly73 (1966), 1049–1056.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    P. Jordan andJ. von Neumann,On inner products in linear metric spaces. Ann. Math.36 (1935), 719–723.CrossRefGoogle Scholar
  13. [13]
    S. Kurepa,The Cauchy functional equation and scalar product in vector spaces. Glas. Mat.19 (1964), 23–35.zbMATHMathSciNetGoogle Scholar
  14. [14]
    S. Kurepa,Quadratic and sesquilinear functions. Glas. Mat.20 (1965), 79–92.zbMATHMathSciNetGoogle Scholar
  15. [15]
    S. Kurepa,Quadratic functionals conditioned on an algebraic basis set. Glasnik Mat.26 (1971), 265–275.MathSciNetGoogle Scholar
  16. [16]
    S. Kurepa,On quadratic forms. Aequationes Math.34 (1987), 125–138.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    C. T. Ng,The equation F(x)+M(x)G(1/x)=0 and homogeneous biadditive forms. Linear Algebra Appl.93 (1987), 255–279.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Röhmel,Charakterisierung quadratischer Formen durch eine Funktionalgleichung. Aequationes Math.15 (1977), 163–168.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    P. Šemrl,Quadratic functionals and Jordan *-derivations, Studia Math.97 (1991), 157–165.MathSciNetGoogle Scholar
  20. [20]
    P. Šemrl,Jordan *-derivations of standard operator algebras. Proc. Amer. Math. Soc.119 (1993), 1105–1113.CrossRefMathSciNetGoogle Scholar
  21. [21]
    P. Šemrl,Jordan *-derivations of standard operator algebras. Proc. Amer. Math. Soc.120 (1994), 515–518.CrossRefMathSciNetGoogle Scholar
  22. [22]
    P. Vrbová,Quadratic functionals and bilinear forms. Časopis pěst. mat.98 (1973), 159–161.Google Scholar
  23. [23]
    J. Vukman,A result concerning additive functions in hermitian Banach *-algebras and an application. Proc. Amer. Math. Soc.91 (1984), 367–372.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    J. Vukman,Some functional equations in Banach algebras and an applications. Proc. Amer. Math. Soc.100 (1987), 133–136.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  1. 1.Faculty of Civil Engineering Department of Basic SciencesUniversity of MariborMariborSlovenia

Personalised recommendations