Advertisement

Kinetics and Catalysis

, Volume 41, Issue 3, pp 415–428 | Cite as

Mechanisms of reactions between > Si=O groups and CO2, N2O, and HC≡CH molecules: An experimental and quantum chemical study

  • V. A. Radtsig
  • I. V. Berestetskaya
  • I. V. Kolbanev
Article

Abstract

IR spectroscopy and quantum chemical calculations are used to study the directions and kinetics of reactions between silanone groups (≡Si-O)2Si=O and CO2, N2O, and acetylene molecules. IR bands are assigned on the basis of the calculation of vibrational spectra of model low-molecular systems. Quantum chemical methods are used to obtain the data on the shapes of potential energy surfaces of these systems (intermolecular complexes and transition states). These data are used to interpret kinetic data. The silanone group is inclined to the formation of relatively stable (~10 kcal/mol) intramolecular complexes with CO2, N2O, and acetylene molecules. Their geometries and electronic structures are determined.

Keywords

Density Functional Theory Potential Energy Surface Quantum Chemical Calculation Silicon Atom Isotopic Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schnockel, H.J.,J. Mol. Struct, 1980, vol. 65, no. 1, p. 115.CrossRefGoogle Scholar
  2. 2.
    Withnall, R.W. and Andrews, L.,J. Am. Chem. Soc, 1985, vol. 107, no. 8, p. 2567.CrossRefGoogle Scholar
  3. 3.
    Arlington, C.A., West, R., and Michl, J.,J. Am. Chem. Soc, 1983, vol. 105, no. 19, p. 6176.CrossRefGoogle Scholar
  4. 4.
    Khabashesku, V.N., Kerzina, Z.A., Mal’tsev, A.K., and Nefedov, O.M.,Izv. Akad. Nauk SSSR, Ser. Khim., 1986, no. 5, p. 1215.Google Scholar
  5. 5.
    Raabe, G. and Michl, J.,Chem. Rev., 1985, vol. 85, p. 419.CrossRefGoogle Scholar
  6. 6.
    Bobyshev, A.A. and Radtsig, V.A.,Kinet. Ratal, 1988, vol. 29, no. 3, p. 638.Google Scholar
  7. 7.
    Radtsig, V.A.,Khim. Fiz., 1991, vol. 10, no. 9, p. 1262.Google Scholar
  8. 8.
    Radzig, V.A.,Colloids Surf., A, 1993, vol. 74, p. 91.CrossRefGoogle Scholar
  9. 9.
    Radtsig, V.A., Berestetskaya, I.V., and Kostritsa, S.N.,Kinet. KataL, 1998, vol. 39, no. 6, p. 940.Google Scholar
  10. 10.
    Morterra, C. and Low, M.J.D.,Ann. N. Y. Acad. Sci., 1973, vol. 220, p. 133.CrossRefGoogle Scholar
  11. 11.
    Radtsig, V.A. and Senchenya, I.N.,Izv. Akad. Nauk, Ser. Khim., 1996, no. 8, p. 1951.Google Scholar
  12. 12.
    Radtsig, V.A.,Kinet. Katal., 1996, vol. 37, no. 2, p. 291.Google Scholar
  13. 13.
    Radtsig, V.A.,Khim. Fiz., 2000, vol. 19, no. 3, p. 17.Google Scholar
  14. 14.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B.,et al., Gaussian 94, Revision D. 1, Pittsburgh: Gaussian, 1995.Google Scholar
  15. 15.
    Hehre, W.J., Radom, L., Schleyer, P.V.R., and Pople, J.A.,Ab initio Molecular Orbital Theory, New York: Wiley, 1986.Google Scholar
  16. 16.
    Becke, A.D.,J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  17. 17.
    Lee, C., Yang, W., and Parr, R.G.,Phys. Rev. B: Condens. Matter, 1988-I, vol. 37, no. 2, p. 785.Google Scholar
  18. 18.
    Scott, A.P. and Radom, L.,J. Phys. Chem., 1996, vol. 100, no. 41, p. 16502.CrossRefGoogle Scholar
  19. 19.
    Bobyshev, A.A. and Radtsig, V.A.,Khim. Fiz., 1988, vol. 7, no. 7, p. 950.Google Scholar
  20. 20.
    Bobyshev, A.A., Radtsig, V.A., and Serichenya, I.N.,Kinet. KataL, 1990, vol. 31, no. 4, p. 931.Google Scholar
  21. 21.
    Radtsig, V.A., Serchenya, I.N., Bobyshev, A.A., and Kazanskii, V.B.,Kinet. KataL, 1989, vol. 30, no. 6, p. 1334.Google Scholar
  22. 22.
    Krasnov, K.S.et al., Molekulyarnye postoyannye neorganicheskikh soedinenii (Molecular Constants of Inorganic Compounds), Leningrad: Khimiya, 1979.Google Scholar
  23. 23.
    Bunker, B.C., Haaland, D.M., Ward, K.J.,et al., Surf. Sci., 1989, vol. 210, p. 406.CrossRefGoogle Scholar
  24. 24.
    Morrow, B.A. and Cody, I.A.,J. Phys. Chem., 1976, vol. 80, no. 18, p. 1995.CrossRefGoogle Scholar
  25. 25.
    Radtsig, V.A.,Kinet. Katal., 1996, vol. 37, no. 2, p. 302.Google Scholar
  26. 26.
    Rabinovitch, B.S. and Flowers, M.C.,Quart. Rev., 1964, vol. 18, p. 122.CrossRefGoogle Scholar
  27. 27.
    Sverdlov, L.M., Kovner, M.A., and Krainov, E.P.,Kolebatel’nye spektry mnogoatomnykh molekul (Vibrational Spectra of Polyatomic Molecules), Moscow: Nauka, 1971.Google Scholar
  28. 28.
    Radtsig, V.A., Baskir, E.G., and Korolev, V.A.,Kinet. Katal., 1995, vol. 36, no. 1, p. 154.Google Scholar
  29. 29.
    Korol’kova, E.M., Radtsig, V.A., and Mel’nikov, M.Ya.,Dokl. Akad. Nauk SSSR, 1993, vol. 331, no. 2, p. 188.Google Scholar
  30. 30.
    Kazanskii, V.B., Gritskov, A.M., and Andreev, V.M.,Dokl. Akad. Nauk SSSR, 1977, vol. 235, no. 1, p. 136.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. A. Radtsig
    • 1
  • I. V. Berestetskaya
    • 1
  • I. V. Kolbanev
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations