Advertisement

Kinetics and Catalysis

, Volume 41, Issue 3, pp 411–414 | Cite as

Focusing effect of coadsorbed CO on the spatial distribution of H2 flow desorbed from iridium

  • V. V. Savkin
  • N. U. Kislyuk
Article
  • 22 Downloads

Abstract

Angular distributions of H2 desorbing from the surface of polycrystalline iridium are studied by temperature-programmed desorption with spatial resolution. The presence of coadsorbed CO strongly affects the spatial distribution of the desorption flow (SDDF) of H2. In the absence of CO, SDDF of H2 is described by the Knudsen law. If H2 desorbs from the layer of coadsorbed CO and H2, SDDF of hydrogen concentrates along the normal to the sample surface. A model is proposed to explain this phenomenon.

Keywords

Iridium Pure Hydrogen Isosteric Adsorption Individual Adsorption Adsorption Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Willigen, V.,Phys. Lett. A, 1968, vol. 28, no. 2, p. 80.CrossRefGoogle Scholar
  2. 2.
    Palmer, R.L., Smith, J.N., Saltsburg, H., and O’Keffe, D.R.,J. Chem. Phys., 1970, vol. 53, no. 5, p. 1666.CrossRefGoogle Scholar
  3. 3.
    Dabiri, A.E., Lee, T.J., and Stickney, R.E.,Surf. Sci., 1971, vol. 26, no. 2, p. 522.CrossRefGoogle Scholar
  4. 4.
    Bradley, T.L., Dabiri, A.E., and Stickney, R.E.,Surf. Sci., 1972, vol. 29, no. 2, p. 590.CrossRefGoogle Scholar
  5. 5.
    Smith, J.N. and Palmer, R.L.,J. Chem. Phys., 1972, vol. 56, no. 1, p. 13.CrossRefGoogle Scholar
  6. 6.
    Comsa, G., David, R., and Schumacher, B.J.,Surf. Sci., 1979, vol. 85, no. 2, p. 45.CrossRefGoogle Scholar
  7. 7.
    Comsa, G., David, R., and Schumacher, B.J.,Surf. Sci., 1980, vol. 95, no. 1, p. L210.CrossRefGoogle Scholar
  8. 8.
    Comsa, G. and David, R.,Surf. Sct., 1982, vol. 117, no. 1, p. 77.CrossRefGoogle Scholar
  9. 9.
    Steinruck, H.P., Winkler, A., and Rendulic, K.D.,J. Phys., C.: Solid State Phys., 1984, vol. 17, no. 2, p. L311.CrossRefGoogle Scholar
  10. 10.
    Lin, T.H. and Somorjai, G.A.,J. Chem. Phys., 1984, vol. 81, no. 2, p. 704.CrossRefGoogle Scholar
  11. 11.
    Rüssel, J.N., Chorkendorff, I., Lanzillotto, A.M.,et al., J. Chem. Phys., 1986, vol. 85, no. 10, p. 6186.CrossRefGoogle Scholar
  12. 12.
    Kurz, E.A. and Hudson, J.B.,Surf. Sei, 1988, vol. 195, no. 1/2, p. 31.CrossRefGoogle Scholar
  13. 13.
    Kurz, E.A. and Hudson, J.B.,J. Vac. Sci. TechnoL, A, 1988, vol. 6, no. 3, parti, p. 774.CrossRefGoogle Scholar
  14. 14.
    Verheij, L.K., Hugenschmidt, M.B., Anton, A.D.,et al., Surf. Sci., 1989, vol. 210, nos. 1/2, p. 1.CrossRefGoogle Scholar
  15. 15.
    Savkin, V.V. and Kislyuk, M.U.,Kinet. Katal., 1996, vol. 37, no. 4, p. 591.Google Scholar
  16. 16.
    Matsushima, T.,J. Phys. Chem., 1987, vol. 91, no. 24, p. 6192.CrossRefGoogle Scholar
  17. 17.
    Savkin, V.V., Kislyuk, M.U., and Sklyarov, A.V.,Kinet. Katal., 1987, vol. 28, no. 6, p. 1409.Google Scholar
  18. 18.
    Redhead, P.A.,Vacuum, 1962, vol. 12, no. 1, p. 203.CrossRefGoogle Scholar
  19. 19.
    Savkin, V.V. and Kislyuk, M.U.,Kinet. Katal, 1997, vol. 38, no. 5, p. 793.Google Scholar
  20. 20.
    Kislyuk, M.U., Savkin, V.V., and Tret’yakov, I.I.,Kinet. Katal. (in press).Google Scholar
  21. 21.
    Savchenko, V.I.,Doctoral (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 1985, p. 83.Google Scholar
  22. 22.
    Kislyuk, M.U. and Bakuleva, T.N.,IZ.V. Akad. Nauk SSSR, Ser. Khim., 1990, no. 6, p. 2699.Google Scholar
  23. 23.
    Kisliuk, P.,J. Phys. Chem. Solids, 1957, vol. 3, no. 1, p. 95.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. V. Savkin
    • 1
  • N. U. Kislyuk
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations