Advertisement

Kinetics and Catalysis

, Volume 41, Issue 3, pp 366–376 | Cite as

Kinetics of soot formation in tetrachloromethane pyrolysis

  • I. V. Zhil’tsova
  • I. S. Zaslonko
  • Yu. K. Karasevich
  • H. Gg. Wagner
Article

Abstract

Kinetics of soot formation is studied in tetrachloromethane pyrolysis behind shock waves. The time dependences of macrokinetic characteristics of soot particle growth (the induction period, the soot yield, and the apparent rate constant of soot particle growth) are determined. Based on the experimental data, the quantitative model of soot formation is developed for tetrachloromethane pyrolysis behind shock waves. Special attention is paid to the thermal effects in CC14 pyrolysis.

Keywords

Shock Wave Pyrolysis Induction Period Soot Particle Kinetic Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhil’tsova, I.V., Zaslonko, I.S., Karasevich, Yu.K., and Wagner, H.Gg.,Kinet. Katal., 2000, vol. 41, no. 1, p. 87.Google Scholar
  2. 2.
    Frenklach, M., Hsu, J.P., Miller, D.L., and Matula, R.A.,Combust. Flame, 1986, vol. 64, no. 1, p. 141.CrossRefGoogle Scholar
  3. 3.
    Starikovsky, A.Yu., Thienel, Th., Wagner, H.Gg., and Zaslonko, I.S.,Ber. Bunsen-Ges. Phys. Chem., 1998, vol. 102, no. 12, p. 1815.Google Scholar
  4. 4.
    Hwang, S.M., Vlasov, P., Wagner, H.Gg., and Wolff, Th.,Z. Phys. Chem., 1991, vol. 173, no. 1, p. 129.Google Scholar
  5. 5.
    Wang, H. and Frenklach, M.,J. Phys. Chem., 1993, vol. 97, no. 15, p. 3867.CrossRefGoogle Scholar
  6. 6.
    Gardiner, WC, Jr., Walker, B.F., and Wakefield, C.B.,Shock Waves in Chemistry, Lifshitz, A., Ed., New York: Marcel Dekker, 1981.Google Scholar
  7. 7.
    Lee, S.C. and Tien, C.L.,18th Int. Symp. on Combustion, Pittsburgh: The Combustion Institute, 1981, p. 1159.Google Scholar
  8. 8.
    Taylor, P.H., Tirey, D.A., and Dellinger, B.,Combust. Flame, 1996, vol. 104, no. 2, p. 260.CrossRefGoogle Scholar
  9. 9.
    Frenklah, M.,Chem. Eng. Sci., 1985, vol. 40, no. 9, p. 1843.CrossRefGoogle Scholar
  10. 10.
    Krestinin, A.V.,Khim. Fiz., 1994, vol. 13, no. 1, p. 121.Google Scholar
  11. 11.
    Warnatz, J., Behrendt, F., Sojka, J.,et al., Advanced Computation and Analysis of Combustion, Roy, G.D., Frolov, S.M. and Givi, P., Eds., Moscow: ENAS, 1997, p. 64.Google Scholar
  12. 12.
    Benson, S.W.,Thermochemical Kinetics, New York: Wiley, 1971.Google Scholar
  13. 13.
    Stein, S.E. and Fahr, A.,J. Phys. Chem., 1985, vol. 89, no. 18, p. 3714.CrossRefGoogle Scholar
  14. 14.
    Michael, J.V., Lim, K.P., Kymaran, S.S., and Kiefer, J.H.,J. Phys. Chem., 1993, vol. 97, no. 9, p. 1914.CrossRefGoogle Scholar
  15. 15.
    Kellerer, H., Müller, A., Bauer, H.-J., and Wittig, S.,Combust. Sci. Technol, 1996, vols. 113–114, no. 1, p. 67.CrossRefGoogle Scholar
  16. 16.
    Frenklach, M.,22nd Int. Symp. on Combustion, Pittsburgh: The Combustion Institute, 1988, p. 1075.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • I. V. Zhil’tsova
    • 1
  • I. S. Zaslonko
    • 1
  • Yu. K. Karasevich
    • 1
  • H. Gg. Wagner
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institut für Physikalische Chemie der UniversitÄt GötingenGötingenGermany

Personalised recommendations