Skip to main content

A review of computerized tomography with application to two-phase flows

Abstract

The technique of computerized tomography (Ct) has established itself as a leading tool in diagnostic radiology over the past twenty years and is catching on fast in the non-destructive evaluation area in a variety of situations.

Ct instrumentation involves a source and a detector system to scan the object of interest. The source can be acoustic, microwave, X-ray, gamma-ray, etc. depending upon the type of material being investigated. For fluid-flows, gamma-rays are quite suitable. There are basically two types of data collection geometries — fan-beam and parallel beam. Fan-beam requires less number of sources as one source feeds several detectors arranged in a fan-beam.

The use ofCt in multi-phase flow studies has been limited presently to only a few laboratory experiments and the results indicate thatCt does hold a lot of promise as an effective investigative methodology to understand some of the complex phenomena encountered in multi-phase flows. Some newCt algorithms developed specifically for pipe-flows have shown good results on some air-water flow data for a 15 cm dia pipe.

This is a preview of subscription content, access via your institution.

References

  1. Arora P, Munshi P, Rathore R K S 1988 Higher order tomographic filters for non-destructive testing purposes.Nucl. Technol. 83: 228–230

    Google Scholar 

  2. Brigham E O 1974The fast Fourier transform (Englewood Cliffs,Nj: Prentice Hall)

    MATH  Google Scholar 

  3. Bracewell R N 1956 Strip integration in radio astronomy.Aust. J. Phys. 9: 198–217

    MATH  MathSciNet  Google Scholar 

  4. Bracewell R N, Riddle A C 1967 Inversion of fan-beam scans in radio astronomy.Astrophys. J. 150: 427–434

    Article  Google Scholar 

  5. Censor Y 1983 Finite series-expansion methods.Proc. IEEE 71: 409–419

    Google Scholar 

  6. Chang T, Herman G T 1980 A scientific study of filter selection for a fan-beam convolution algorithm.SIAM J. Appl. Math. 39: 83–105

    MATH  Article  MathSciNet  Google Scholar 

  7. Cormack A M 1963 Representation of a function by its line integrals, with some radiological applications.J. Appl. Phys. 34: 2722–2727

    MATH  Article  Google Scholar 

  8. Deans S R 1983The Radon transform and some of its applications (New York: John Wiley)

    MATH  Google Scholar 

  9. DeVuono A C, Schlosser P A, Kulacki F A, Munshi P 1980 Design of an isotopicCt scanner for two-phase flow measurements.IEEE Trans. Nucl. Sci. NS-27: 814–820

    Google Scholar 

  10. Gordon R, Bender R, Herman G T 1970 Algebraic reconstruction technique (Art) for three-dimensional microscopy and X-ray photography.J. Theor. Biol. 29: 471–481

    Article  Google Scholar 

  11. Herman G T 1980Image reconstruction from projections: The fundamentals of computerized tomography (New York: Academic Press)

    MATH  Google Scholar 

  12. Herman G T, Naparstek A 1978 Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data.SIAM J. Appl. Math. 33: 511–533

    Article  MathSciNet  Google Scholar 

  13. Hounsfield G N 1973 Computerized transverse axial scanning tomography. Part I: Description of the system.Br. J. Radiol. 46: 1016–1022

    Article  Google Scholar 

  14. Kaczmarz M S 1937 Angenaherte auflosung von systemen linearer gleichungen.Bull. Acad. Polonaise Sci. Lett. Classe Sci. Math. Natur. Serier A35: 355–357

    Google Scholar 

  15. Kulacki F A, Schlosser P A, DeVuono A C, Munshi P 1980 A preliminary study of the application of reconstruction tomography to void-fraction measurements in two-phase flow.Proc. ANS/ASME/NRC Topical Meeting on Nuclear Reactor Thermal — Hydraulics NUREG/CP-0014, Saratoga Springs (New York) pp. 904–922

    Google Scholar 

  16. Lewitt R M 1983 Reconstruction algorithms: transform methods.Proc. IEEE 71: 390–408

    Google Scholar 

  17. McClellan G C, Tow D M 1986 Neutron tomography of damaged nuclear fuel bundles.Neutron Radiography, Proc. Second World Conference. (Paris: D Reidel) pp. 711–718

    Google Scholar 

  18. Miyoshi S, Tanimoto Y, Uyuma K, Sano K 1987 The evaluation ofScc defects of steel piping using high-energy X-rayCt Scanner.Nucl. Eng. Design 102: 275–287

    Article  Google Scholar 

  19. Munshi P 1979Two-phase flow studies in the bubbly-flow regime using a scanning gamma-ray densitometer, M S Thesis, Ohio State University, Columbus, Ohio

    Google Scholar 

  20. Munshi P 1989Error estimates for the convolution back-projection algorithm in computerized tomography, Ph D Thesis, Indian Institute of Technology, Kanpur

    Google Scholar 

  21. Munshi P, Rathore R K S 1990 Some new tomographic methods for multi-phase flow situations.Advances in mechanical engineering (ed.) R S Agarwal (New Delhi: Tata McGraw Hill) pp. 717–725

    Google Scholar 

  22. Munshi P, Rathore R K S, Swamy S T, Dhariyal I D 1987 Tomographic reconstruction of the density distribution using direct fan-beam algorithms.Nucl. Instrum. Methods Phys. Res. A257: 398–405

    Google Scholar 

  23. Natterer F 1986The mathematics of computerized tomography (New York: John Wiley & Sons)

    MATH  Google Scholar 

  24. Radon J 1917 Uber die bestimmung von funktionen durch ihre integralwarte langs gewisser mannigfaltigkeiten.Berichte Sachsische Akademie der Wissenschaften Leipzig. Math. — Phys. Kl 69: 262–267

    Google Scholar 

  25. Ramachandran G N, Lakshminarayanan A V 1970 Three dimensional reconstruction from radiographs and electron micrographs: application of convolution instead of Fourier transforms.Proc. Natl. Sci. Acad. USA 68: 2236–2240

    Article  MathSciNet  Google Scholar 

  26. Rathore R K S, Dhariyal I D, Munshi P, Seshadri M D 1986 Tomographic reconstruction using radial polynomials.Trans. Am. Nucl. Soc. 52: 407–409

    Google Scholar 

  27. Rathore R K S, Munshi P, Arora P, Malik S D, Vaish A K, Singh K S, Singh U 1989 A new non-Fourier tomographic filter for image reconstruction.Nucl. Technol. 85: 346–349

    Google Scholar 

  28. Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1987a Point-density measurements in radially symmetric flows using Bessel functions.Trans. Am. Nucl. Soc. 54: 176–178

    Google Scholar 

  29. Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988a Filtered Bessel functions in computerized tomography.Nucl. Eng. Design 108: 375–384

    Article  Google Scholar 

  30. Rathore R K S, Munshi P, Dhariyal I D, Swamy S T 1987b Tomographic reconstruction of the density field using radial polynomials.Nucl. Technol. 78: 7–12

    Google Scholar 

  31. Rathore R K S, Munshi P, Jarwal R K 1987c Measurement of void-fraction distribution using a tomographic chord-segment inversion technique.Am. Soc. Mech. Engrs. FED 50: 164–166

    Google Scholar 

  32. Rathore R K S, Munshi P, Jarwal R K, Dhariyal I D 1988b Investigation of the bubbly air-water flow using the chord-segment inversion algorithm.Nucl. Technol. 82: 227–234

    Google Scholar 

  33. Schlosser P A, DeVuono A C, Kulacki F A, Munshi P 1980a Analysis of high-speedCt scanners for non-medical applications.IEEE Trans. Nucl. Sci. NS-27: 780–794

    Google Scholar 

  34. Schlosser P A, DeVuono A C, Kulacki F A, Munshi P 1980b Cross-sectional density measurements of multi-phase flow using computerized tomography, Argonne National laboratory,ANL-80-62

  35. Seshadri M D, Munshi P, Dhariyal I D, Rathore R K S 1986 Application of digital tomography in two-phase flow studies.Nucl. Instrum. Methods Phys. Res. A251: 577–582

    Google Scholar 

  36. Shepp L A, Logan B F 1974 The Fourier reconstruction of a head section.IEEE Trans. Nucl. Sci. NS-21: 21–43

    Google Scholar 

  37. Tanabe K 1971 Projection method for solving a singular system.Numer. Math. 17: 203–214

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P Munshi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munshi, P. A review of computerized tomography with application to two-phase flows. Sadhana 15, 43–55 (1990). https://doi.org/10.1007/BF02753697

Download citation

Keywords

  • Tomography
  • image reconstruction
  • two-phase flow
  • void-fraction