Skip to main content

A review of computerized tomography with application to two-phase flows

Abstract

The technique of computerized tomography (Ct) has established itself as a leading tool in diagnostic radiology over the past twenty years and is catching on fast in the non-destructive evaluation area in a variety of situations.

Ct instrumentation involves a source and a detector system to scan the object of interest. The source can be acoustic, microwave, X-ray, gamma-ray, etc. depending upon the type of material being investigated. For fluid-flows, gamma-rays are quite suitable. There are basically two types of data collection geometries — fan-beam and parallel beam. Fan-beam requires less number of sources as one source feeds several detectors arranged in a fan-beam.

The use ofCt in multi-phase flow studies has been limited presently to only a few laboratory experiments and the results indicate thatCt does hold a lot of promise as an effective investigative methodology to understand some of the complex phenomena encountered in multi-phase flows. Some newCt algorithms developed specifically for pipe-flows have shown good results on some air-water flow data for a 15 cm dia pipe.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Arora P, Munshi P, Rathore R K S 1988 Higher order tomographic filters for non-destructive testing purposes.Nucl. Technol. 83: 228–230

    Google Scholar 

  • Brigham E O 1974The fast Fourier transform (Englewood Cliffs,Nj: Prentice Hall)

    MATH  Google Scholar 

  • Bracewell R N 1956 Strip integration in radio astronomy.Aust. J. Phys. 9: 198–217

    MATH  MathSciNet  Google Scholar 

  • Bracewell R N, Riddle A C 1967 Inversion of fan-beam scans in radio astronomy.Astrophys. J. 150: 427–434

    Article  Google Scholar 

  • Censor Y 1983 Finite series-expansion methods.Proc. IEEE 71: 409–419

    Google Scholar 

  • Chang T, Herman G T 1980 A scientific study of filter selection for a fan-beam convolution algorithm.SIAM J. Appl. Math. 39: 83–105

    MATH  Article  MathSciNet  Google Scholar 

  • Cormack A M 1963 Representation of a function by its line integrals, with some radiological applications.J. Appl. Phys. 34: 2722–2727

    MATH  Article  Google Scholar 

  • Deans S R 1983The Radon transform and some of its applications (New York: John Wiley)

    MATH  Google Scholar 

  • DeVuono A C, Schlosser P A, Kulacki F A, Munshi P 1980 Design of an isotopicCt scanner for two-phase flow measurements.IEEE Trans. Nucl. Sci. NS-27: 814–820

    Google Scholar 

  • Gordon R, Bender R, Herman G T 1970 Algebraic reconstruction technique (Art) for three-dimensional microscopy and X-ray photography.J. Theor. Biol. 29: 471–481

    Article  Google Scholar 

  • Herman G T 1980Image reconstruction from projections: The fundamentals of computerized tomography (New York: Academic Press)

    MATH  Google Scholar 

  • Herman G T, Naparstek A 1978 Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data.SIAM J. Appl. Math. 33: 511–533

    Article  MathSciNet  Google Scholar 

  • Hounsfield G N 1973 Computerized transverse axial scanning tomography. Part I: Description of the system.Br. J. Radiol. 46: 1016–1022

    Article  Google Scholar 

  • Kaczmarz M S 1937 Angenaherte auflosung von systemen linearer gleichungen.Bull. Acad. Polonaise Sci. Lett. Classe Sci. Math. Natur. Serier A35: 355–357

    Google Scholar 

  • Kulacki F A, Schlosser P A, DeVuono A C, Munshi P 1980 A preliminary study of the application of reconstruction tomography to void-fraction measurements in two-phase flow.Proc. ANS/ASME/NRC Topical Meeting on Nuclear Reactor Thermal — Hydraulics NUREG/CP-0014, Saratoga Springs (New York) pp. 904–922

    Google Scholar 

  • Lewitt R M 1983 Reconstruction algorithms: transform methods.Proc. IEEE 71: 390–408

    Google Scholar 

  • McClellan G C, Tow D M 1986 Neutron tomography of damaged nuclear fuel bundles.Neutron Radiography, Proc. Second World Conference. (Paris: D Reidel) pp. 711–718

    Google Scholar 

  • Miyoshi S, Tanimoto Y, Uyuma K, Sano K 1987 The evaluation ofScc defects of steel piping using high-energy X-rayCt Scanner.Nucl. Eng. Design 102: 275–287

    Article  Google Scholar 

  • Munshi P 1979Two-phase flow studies in the bubbly-flow regime using a scanning gamma-ray densitometer, M S Thesis, Ohio State University, Columbus, Ohio

    Google Scholar 

  • Munshi P 1989Error estimates for the convolution back-projection algorithm in computerized tomography, Ph D Thesis, Indian Institute of Technology, Kanpur

    Google Scholar 

  • Munshi P, Rathore R K S 1990 Some new tomographic methods for multi-phase flow situations.Advances in mechanical engineering (ed.) R S Agarwal (New Delhi: Tata McGraw Hill) pp. 717–725

    Google Scholar 

  • Munshi P, Rathore R K S, Swamy S T, Dhariyal I D 1987 Tomographic reconstruction of the density distribution using direct fan-beam algorithms.Nucl. Instrum. Methods Phys. Res. A257: 398–405

    Google Scholar 

  • Natterer F 1986The mathematics of computerized tomography (New York: John Wiley & Sons)

    MATH  Google Scholar 

  • Radon J 1917 Uber die bestimmung von funktionen durch ihre integralwarte langs gewisser mannigfaltigkeiten.Berichte Sachsische Akademie der Wissenschaften Leipzig. Math. — Phys. Kl 69: 262–267

    Google Scholar 

  • Ramachandran G N, Lakshminarayanan A V 1970 Three dimensional reconstruction from radiographs and electron micrographs: application of convolution instead of Fourier transforms.Proc. Natl. Sci. Acad. USA 68: 2236–2240

    Article  MathSciNet  Google Scholar 

  • Rathore R K S, Dhariyal I D, Munshi P, Seshadri M D 1986 Tomographic reconstruction using radial polynomials.Trans. Am. Nucl. Soc. 52: 407–409

    Google Scholar 

  • Rathore R K S, Munshi P, Arora P, Malik S D, Vaish A K, Singh K S, Singh U 1989 A new non-Fourier tomographic filter for image reconstruction.Nucl. Technol. 85: 346–349

    Google Scholar 

  • Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1987a Point-density measurements in radially symmetric flows using Bessel functions.Trans. Am. Nucl. Soc. 54: 176–178

    Google Scholar 

  • Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988a Filtered Bessel functions in computerized tomography.Nucl. Eng. Design 108: 375–384

    Article  Google Scholar 

  • Rathore R K S, Munshi P, Dhariyal I D, Swamy S T 1987b Tomographic reconstruction of the density field using radial polynomials.Nucl. Technol. 78: 7–12

    Google Scholar 

  • Rathore R K S, Munshi P, Jarwal R K 1987c Measurement of void-fraction distribution using a tomographic chord-segment inversion technique.Am. Soc. Mech. Engrs. FED 50: 164–166

    Google Scholar 

  • Rathore R K S, Munshi P, Jarwal R K, Dhariyal I D 1988b Investigation of the bubbly air-water flow using the chord-segment inversion algorithm.Nucl. Technol. 82: 227–234

    Google Scholar 

  • Schlosser P A, DeVuono A C, Kulacki F A, Munshi P 1980a Analysis of high-speedCt scanners for non-medical applications.IEEE Trans. Nucl. Sci. NS-27: 780–794

    Google Scholar 

  • Schlosser P A, DeVuono A C, Kulacki F A, Munshi P 1980b Cross-sectional density measurements of multi-phase flow using computerized tomography, Argonne National laboratory,ANL-80-62

  • Seshadri M D, Munshi P, Dhariyal I D, Rathore R K S 1986 Application of digital tomography in two-phase flow studies.Nucl. Instrum. Methods Phys. Res. A251: 577–582

    Google Scholar 

  • Shepp L A, Logan B F 1974 The Fourier reconstruction of a head section.IEEE Trans. Nucl. Sci. NS-21: 21–43

    Google Scholar 

  • Tanabe K 1971 Projection method for solving a singular system.Numer. Math. 17: 203–214

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munshi, P. A review of computerized tomography with application to two-phase flows. Sadhana 15, 43–55 (1990). https://doi.org/10.1007/BF02753697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02753697

Keywords

  • Tomography
  • image reconstruction
  • two-phase flow
  • void-fraction