Skip to main content
Log in

Lie-isotopic lifting of the special relativity for extended deformable particles

  • Published:
Lettere al Nuovo Cimento (1971-1985)

Summary

We recall the variation of the speed of light with the local physical conditions of the material media in which it propagates, and identify a corresponding class of generalized metrics. The underlying group of isometries is constructed via a Lie-isotopic lifting of the envelope, algebra and group structure of Lorentz transformations. It is shown that the generalized transformations, called Lorentz-isotopic, are apparently capable of characterizing an isotopic lifting of the special relativity for extended, and therefore deformable particles. The current experimental information on the apparent approximate character of the conventional Lorentz transformations in particle physics are reviewed, and a number of direct tests suitable for the resolution of the issue are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The early, well-written, treateses on special relativity stressed explicitly its restricted applicability to massive points (see,e.g., the title of Chapt. VI olP. G. Bergmann:Introduction io Special Relativity (Englewood Cliffs, N.J., 1912))

  2. E. Fermi:Nuclear Physics (Chicago, I11., 1949), p. 111.

  3. R. M. Santilli:Hadronic J.,1, 574 (1978).

    MathSciNet  Google Scholar 

  4. Proceedings of the Second Workshop on Lie-admissible Formulations, Parts A and B,Hadronic J.,3, (1979);Proceedings of the Third Workshop on Lie-admissible Formulations, Parts A, B and C,Hadronic J.,4 (1980); see also theProceedings of the First International Conference on Nonpotential Interactions and Their Lie-admissible treatment, Parts A, B, C and D,Hadronic J.,5 (1982).

  5. R. M. Santilli:Foundations of Theoretical Mechanics, Vol. I (Berlin, 1978).

  6. R. M. Santilli:Lett. Nuovo Cimento,33, 145 (1982).

    Article  ADS  Google Scholar 

  7. V.De Sabbata andM. Gasperini:Lett. Nuovo Cimento,34, 337 (1982).

    Article  ADS  Google Scholar 

  8. D. Y. Kim:Hadronic J.,1, 1343 (1978), and quoted papers.

    Google Scholar 

  9. H. B. Nielsen andI. Picek:Nucl. Phys. B,211, 269 (1983).

    Article  ADS  Google Scholar 

  10. K. Huerta-Quintanilla and J. L. Lucio: Fermilab preprint 83/18-THY (1983).

  11. B. Recami andR. Mignani:Lett. Nuovo Cimento,4, 144 (1972). For an updated review, seeG. D. Maccarone and E. Recami: preprint INFN/AE-82/12 (1982), University of Catania, Italy.

    Article  Google Scholar 

  12. G. Yu. Bogoslovsky:Nuovo Cimento B,40, 99, 116 (1977);43, 377 (978).

    Article  ADS  Google Scholar 

  13. S. H. Aronson, G. J. Book, H. Y. Cheng andE. Fishback:Phys. Rev. Lett., 48, 1306 (1982).

    Article  ADS  Google Scholar 

  14. G. Eder:Hadronic J.,4, 634, 2018 (1981);5, 750 (1982).

    MathSciNet  Google Scholar 

  15. P. K. Phillips:Rev. Sci. Instr.,50, 1018 (1979).

    Article  ADS  Google Scholar 

  16. A. Zee:Phys. Rev. D,25, 1864 (1982).

    Article  ADS  Google Scholar 

  17. M. Forte, B. R. Heoeel, N. F. Ramsey, K. Geeen, G. L. Green, J. Byene andJ. L. Pendleeury:Phys. Rev. Lett.,45, 2088 (1980).

    Article  ADS  Google Scholar 

  18. R. J. Slobodrian, C. Rioxjx, R. Roy, H. E. Conzett, P. von Rossen andF. Interberger:Phys. Rev. Lett.,47, 1803 (1981);C. Rioux, R. Roy, R. J. Slobodrian and H. E. Conzett:Nucl. Phys. A,394 (1983); andR. A. Hardekopf, P. W. Keaton, P. W. Lisowski and L. R. Veseer:Phys. Rev. C,25, 1090 (1982).

    Article  ADS  Google Scholar 

  19. See,e.g., theB.C.D.M.S. Collaboration: J.I.N.R. Preprint EI-82-656 (1982), Dubna, U.S.S.R.

  20. I. I. Bigi:Z. Phys. C,12, 235 (1982).

    Article  ADS  Google Scholar 

  21. H. Rauch:Hadronic J.,5, 729 (1982).

    Google Scholar 

  22. Apparently, its first application to Lie’s theory (enveloping algebras, Lie algebras, and Lie groups) was made byR. M. Santilli:Hadronic J.,4, 223 (1978), pp. 287–290 and 329–374, as an intermediary step toward the Lie-admissible generalization of Lie’s theory. A review of the state of the art in 1982 is presented in ref. (25), pp. 148–183. Specific applications to the generalization of pseudo-Euclidean spaces have been presented in ref. (26, 27). Mathematical studies can be found in ref. (5).

    MathSciNet  Google Scholar 

  23. R. M. Santilli:Foundations of Theoretical Mechanics, Vol. II (Berlin, 1982).

  24. R. M. Santilu:Lie-isotopic liftings of Lie’s theory. - I:General considerations, I.B.R. preprint DE-83-2 (1983), submitted for publication.

  25. R. M. Santilli:Lie-isotopic liftings of Lie’s theory. - II:Lifting of rotations, I.B.R. preprint DE-83-2 (1983), submitted for publication.

  26. P. Roman:Theory of Elementary Particles (Amsterdam, 1964).

Download references

Author information

Authors and Affiliations

Authors

Additional information

An excellent account still remains that byW. Pauli:Relativitätstheorie (Lipsia, 1921).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santilli, R.M. Lie-isotopic lifting of the special relativity for extended deformable particles. Lett. Nuovo Cimento 37, 545–555 (1983). https://doi.org/10.1007/BF02751864

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02751864

PACS

Navigation