Skip to main content
Log in

On the mobility of the H3O+ ion in ice crystals

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

The temperature-dependent Greens function method is used for the calculation of the H3O+ ion mobility. The mobility is determined by a second-order relaxation process which involves the emission of one phonon and the absorption of another. At this process one proton of the ion undergoes the virtual transition from the ground state to the excited vibrational state in the hydrogen bond. The calculated proton relaxation time is 3.10−12 s and the theory accounts reasonably well for the experimental data.

Riassunto

Si usa il metodo della funzione di Green dipendente dalla temperatura per oalcolare la mobilità dell’ione H3O+. La mobilità è determinata da un processo di rilassamente del secondo ordine che comporta l’emissione di un fotone e l’assorbimento di un altro fotone. In questo processo un protone dell’ione subisce una transizione virtuale dallo stato fondamentale allo stato vibratorio eccitato nel legame dell’idrogeno. Il calcolo del tempo di rilassamento del protone dà 3.10112 s e la teoria rende ragionevolmente conto dei dati sperimentali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. GrÄnicher:Phys. kondens. Materie,1, 1 (1963); review article.

    ADS  Google Scholar 

  2. J. D. Dunitz:Nature,197, 860 (1963).

    Article  ADS  Google Scholar 

  3. C. Haas:Phys. Lett.,3, 126 (1962).

    Article  ADS  Google Scholar 

  4. L. Onsager andM. Dupuis :Rendiconti S.I.F., X Corso (Bologna, 1960), p. 294.

  5. M. Eigen, L. De Maeyer andH. C. Spatz:Coll. Physics of Ice Crystals (1962) andProc. Roy. Soc. (London), A247, 505 (1958).

  6. V. L. Bonc-Brijevic andS. V. Tjablikov:Metod Fukcii Grina v Statisticeskoj Mehanike (Moskva, 1961).

  7. F. Bloch:Zeits. Phys.,52, 555 (1928).

    Article  ADS  MATH  Google Scholar 

  8. J. M. Ziman:Proc. Gamb. Phil. Soc.,51, 707 (1955).

    Article  ADS  MATH  Google Scholar 

  9. B. Goodmann:Phys. Rev.,110, 888 (1958).

    Article  ADS  Google Scholar 

  10. G. V. Chester andA. Houghton:Proc. Phys. Soc.,73, 609 (1959).

    Article  ADS  MATH  Google Scholar 

  11. J. M. Ziman:Electrons and phonons (Oxford, 1960).

  12. P. Flubacher, A. J. Leadbetter andJ. A. Morrison:Journ. Chem. Soc.,33, 1751 (1960).

    ADS  Google Scholar 

  13. A. N. Baker:Journ. Chem. Phys.,25, 381 (1956).

    Article  ADS  Google Scholar 

  14. C. Haas andD. F. Hornig:Journ. Chem. Phys.,32, 1763 (1960).

    Article  ADS  Google Scholar 

  15. R. L. Somorjai andD. F. Hornig:Journ. Chem. Phys.,36, 1980 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosar, P. On the mobility of the H3O+ ion in ice crystals. Nuovo Cim 30, 931–946 (1963). https://doi.org/10.1007/BF02750426

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02750426

Navigation