Skip to main content
Log in

Continuous stochastic approach to birth and death processes and co-operative behaviour of systems far from equilibrium

Континуальное стоха стическое описание п роцессов рождения-гибели и кооперативное повед ение систем далеких о т равновесия

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The continuous stochastic formalism for the description of systems with birth and death processes randomly distributed in space is developed with the use of local birth and death operators and local generalization of the corresponding Chapman-Kolmogorov equation. The functional stochastic equation for the evolution of the probability functional is derived and its modifications for evolution of the characteristic functional and the first passage time problem are given. The corresponding evolution equations for equal-time correlators are also derived. The results are generalized then on the exothermic and endothermic chemical reactions. As examples of the particular applications of the results the small fluctuations near stable equilibrium state and fluctuations in monomolecular reactions, Lotka-Volterra model, Schlögl reaction and brusselator are considered. It is shown that the two-dimensional Lotka-Volterra model may exhibit synergetic phase transition analogous to the topological transition of the Kosterlitz-Thouless-Berezinskii type. At the end of the paper some general consequences from stochastic evolution of the birth and death processes are discussed and the arguments on their importance in evolution of populations, cellular dynamics and in applications to various chemical and biological problems are presented.

it]Riassunto

Il formalismo stocastico continuo per la descrizione di sistemi con processi di nascita e di morte distribuiti in modo casuale nello spazio è sviluppato con l’uso degli operatori locali di nascita e di morte e la generalizzazione locale della corrispondente equazione di Chapman-Kolmogorov. Si deriva l’equazione funzionale stocastica per l’evoluzione della funzione di probabilità e si danno le sue modifiche per l’evoluzione della funzione caratteristica ed il problema del primo tempo di passaggio. Si derivano anche le corrispondenti equazioni di evoluzione per correlatori a tempo uguale. Si sono anche generalizzati i risultati sulle reazioni chimiche esotermiche ed endotermiche. Come esempi di particolari applicazioni dei risultati sono considerate le piccole fluttuazioni vicino allo stato di equilibrio stabile e le fluttuazioni nelle reazioni monomolecolari, nel modello di Lokta-Volterra, nella reazione di Schlögl e nel brusselator. Si mostra che il modello bidimensionale di Lokta-Volterra può esibire una transizione di fase sinergica analoga alla transizione topologica del tipo di Kosterlitz-Thouless-Berezinskii. Alla fine del lavoro si discutono alcune conseguenze generali dell’evoluzione stocastica dei processi di nascita e di morte e si presentano gli argomenti sulla loro importanza nell’evohizione delle popolazioni, della dinamica cellulare e nelle applicazioni a vari problemi chimici e biologici.

Резюме

Развит континуальны й стохастический формализм для описан ия эволюции процессов р ождения-гибели со слу чайным распределением в про странстве. Формализм основан на использовали локаль ных операторов рождения-гибели и локальном обобщении соответствующего ур авнения Чепмена-Колмогорова. Выведено функциональное стох астическое уравнени е для эволюции функционал а распределения вероятностей и даны е го модификации для эв олюции характеристическог о функционала и задачи о среднем времени пер вого достижения границ. Вы ведены также соответствующ ие уравнения для эвол юции одновременных корре ляторов. Затем результаты обо бщаются на случай экзотермических и эн дотермических химич еских реакций. В качестве ко нкретных приложений рассмотрены задачи о малых флуктуациях вблизи у стойчивого положени я равновесия, о флуктуациях в моном олекулярных реакциях, модели Лотк и-Вольтерры, реакции Ш лёгля и брюсселяторе. Показано, что в двумер ной модели Лотки-Воль терры может существовать синерг е-тический фазовый переход, анал огичный топологичес кому переходу типа Костер лица-Таулеса-Березин ского. В заключение обсужда ются некоторые общие закономерности стохастической эвол юции процессов рожде ния-гибели и приводятся аргумент ы, показывающие их важн ость для эволюции поп уляций и клеточной динамики, а также в различных хи мических и биологиче ских проблемах.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Nicolis andI. Prigogine:Self-Organization in Noneqvdlibrium Systems (Wiley, New York, N. Y., 1977).

    Google Scholar 

  2. H. Haken:Synergetics. An Introduction, 2nd Edition,Springer Series in Synergetics, Vol. 1 (Springer, Berlin, 1978).

    Google Scholar 

  3. D. Mc Quakrie:Supplement Review Series in Applied Probability (Methuen, London, 1976).

    Google Scholar 

  4. H. Haken:Z. Phys. B,20, 413 (1975);C. W. Gabdiner, K.J. Macneil, D. F. Walls andI. S. Matheson:J. Stat. Phys.,14, 307 (1976);C. Van Den Broeck, J. Hauard andM. Malek-Mansour:Physica (Utrecht) A,101, 167 (1980);G. Nicolis:Stochastic Nonlinear Systems in Physics, Chemistry, and Biology inProceedings of the Workshop, Bielefeld, F.R.G., October 5–11, 1980, edited byL. Arnold andE. Lefever (Springer, Berlin, 1981), p. 44.

    Article  ADS  Google Scholar 

  5. M. Doi:J. Phys. A,9, 1465, 1479 (1976);Ya. B. Zel’dovich andA.A. Ovchinnikov: Z.Éksp Teor. Fiz.,74, 1588 (1978);A. S. Mikhailov andV. V. Yashin:J. Stat. Phys.,38, 347 (1985);L. Peliti:J. Phys. (Paris),46, 1469 (1985).

    Article  ADS  Google Scholar 

  6. G. Parisi andY. Wu:Sci. Sin.,24, 483 (1981).

    MathSciNet  Google Scholar 

  7. L. D. Landau andE. M. Lifschits:Quawtwm Mechanics. Nowrelativistic Theory (Pergamon Press, New York, N. Y., 1976).

    Google Scholar 

  8. C. Gardiner:J. Stat. Phys.,15, 451 (1976), andS. Grossman:J. Chem. Phys.,65, 2007 (1976), where the fluctuation corrections of the lowest order were obtained.

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Lax:Fluctuation and coherence phenomena m classical and quantum physics, inStatistical Physics, Phase Transitions, and Superconductivity, edited byM. Chretien, E. P. Gross andS. Deser (Gordon and Breach, New York, N. Y., 1968);

    Google Scholar 

  10. R. Kubo, K. Matsuo andK. Kitahara:J. Stat. Phys.,9, 51 (1973).

    Article  ADS  Google Scholar 

  11. V.I. Kljatskin:Statistical Description of Dynamical Systems with Fluctuating Parameters (Nauka, Moscow, 1975).

    Google Scholar 

  12. N. N. Bogoljubov andD. V. Shirkov:Introduction to the Theory of Quantmn Fields (Nauka, Moscow, 1976);A.N. Vasil’ev:Functional Methods in Quantum Theory and Statistics (LGU, Leningrad, 1976);C. Itztkson andJ. B. Zuber:Quantum Fields Theory (McGraw-Hill, New York, N. Y., 1980);R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path Integrals (McGraw-Hill, New York, N. Y., 1965).

    Google Scholar 

  13. R.L. Stratonovich:Topics on the Theory of Random Noise, Vol. 1 (Gordon and Breach, New York, N. Y., 1963);E. B. Dynkin:Markov Processes (Springer, New York, N. Y., 1965); very clear derivation may be found also inM. A. Leontovich:Introduction to Thermodynamics. Statistical Physics (Nauka, Moscow, 1983).

    Google Scholar 

  14. N. Rivier andD. M. Duffy:J. Phys. (Paris),43, 293 (1982) ;Numerical Methods in the Study of Critical Phenomena, inProceedings of the Collogues, Carry-le-Rouet, France,June 2–4, 1980, edited byJ. Della Dora, J. Demengeot andB. Lacolle (Springer, Berlin, 1981), p. 132.

    Article  Google Scholar 

  15. J. D. Breit, S. Gupta andA. Zaks:Nucl. Phys. B,233, 61 (1984);J. Alfaro, R. Jengo andN. Parga:Phys. Rev. Lett.,54, 369 (1985); similar ideas were developed previously also inH. Yahata:Prog. Theor. Phys.,51, 2003 (1974).

    Article  ADS  Google Scholar 

  16. F. Baras, G. Nicolis, M. Malek-Mansotur andJ.W. Turner:J. Stat. Phys.,32, 1 (1973);F. de Pasquale andA. Mecozzi:Phys. Rev. A,31, 2454 (1985).

    Article  ADS  Google Scholar 

  17. V. R. Chechetkin, E. B. Levchenko andA. S. Sigov:J. Phys. D,18, 461 (1985);V. R. Chechetkin andA. S. Sigov:J. Phys. D,18, (in press);

    Article  ADS  Google Scholar 

  18. V. R. Chechetkin andA. S. Sigov.Philos. Mag. A (in press).

  19. C. Van Den Broeck:J. Stat. Phys.,31, 467 (1983);C. Van Den Broeck andP. Hänggi:Phys. Rev. A,30, 2609 (1984).

    Article  ADS  MATH  Google Scholar 

  20. N. G. Van Kampen:J. Stat. Phys.,24, 175 (1981). More general stochastic rules are discussed inV. E. Shapieo andV. M. Loginov:Dynamical Systems Subject to Random Disturbances (Nauka, Novosibirsk, 1983).

    Article  ADS  MATH  Google Scholar 

  21. P. Hänggi:Z. Phys. B,36, 271 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  22. E. M. Lifschits andL. P. Pitaevskii:Statistical Physics, Part 2 (Nauka, Moscow, 1973).

    MATH  Google Scholar 

  23. L. D. Landau andE. M. Lifshits:Statistical Physics, Part 1 (Pergamon Press, New York, N. Y., 1980).

    Google Scholar 

  24. F. V. Bunkin, N. A. Kirichenko andB. S. Lük’janchuk:Usp. Fiz. Nauh,138, 45 (1982).

    Article  Google Scholar 

  25. A. P. Levanjuk:Z. Éksp. Teor. Fiz.,36, 810 (1959);V. L. Ginzburg:Fiz. Tverd. Tela (Leningrad),2, 2034 (1960).

    Google Scholar 

  26. H. E. Stanley:Introduction to Phase Transitions and Critical Phenomena, 2nd Edition (Oxford Press, London, 1980) ;b) A. Z. Patashinkii andV. L. Pokrovskii :Fluctuation Theory of Phase Transitions, 2nd Edition (Nauka, Moscow, 1982).

    Google Scholar 

  27. M. Lax:Rev. Mod. Phys.,32, 25 (1960).

    Article  ADS  MATH  Google Scholar 

  28. M. A. Lavrent’ev andB. V. Shabat:Methods of the Theory of Functions from One Complex Variable (Nauka, Moscow, 1973).

    Google Scholar 

  29. E. B. Gledzer, P. V. Delszanskii andA.M. Obukhov:The Systems of Hydrodynamic Type and Their Applications (Nauka, Moscow, 1981).

    Google Scholar 

  30. J. D. Murray:Lectures on Nonlinear-Differential-Equation Models in Biology (Clarendon Press, Oxford, 1977).

    Google Scholar 

  31. G. Nikolis, M. Malek-Mansour, A. Van Nypelseer andK. Kitahara:J. Stat. Phys.,14, 417 (1976);

    Article  ADS  Google Scholar 

  32. M. Malek-Mansour andG. Nikolis:J. Stat. Phys.,13, 197 (1976).

    Article  ADS  Google Scholar 

  33. V. L. Berezinskii:Z. Éksp. Tear. Fig.,59, 907 (1970);61, 1144 (1971);

    Google Scholar 

  34. J. M. Kosteblitz andD. Thouless:J. Phys. C,6, 1181 (1973) ;J. M. Kosterlitz :J. Phys. C,7, 1046 (1974).

    Article  ADS  Google Scholar 

  35. A. T. Winfree:Sciences,175, 634 (1972); 181, 137 (1973);A.M. Zhabotinskii:Concentration Autoseintillations (Nauka, Moscow, 1974);L. S. Polak andA. S. Mikhailov:Self-Organization in Nonequilibrium Physico-Chemical Systems (Nauka, Moscow, 1983).

    Article  Google Scholar 

  36. P. L. Chow andW. C. Tam:Bull. Math. Biol.,38, 643 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  37. K. J. McNeil andD. F. Wails:J. Stat. Phys.,10, 439 (1974);A. Nitzan, P. Ortoleva, J. Deutch andJ. Ross:J. Chem. Phys.,61, 1056 (1974);S. Grossmann:Stochastic Nonlinear Systems in Physics, Chemistry, and Biology inProceedings of the Workshop, Bielefeld, F.R.G., October 5–11, 1980, edited byL. Arnold andR. Lefever (Springer, Berlin, 1981), p. 213.

    Article  ADS  Google Scholar 

  38. F. Shlögl:Z. Phys.,253, 147 (1972).

    Article  ADS  Google Scholar 

  39. A. S. Sigov andV. R. Chechetkin:Dokl. Akad. Nauk SSSR,285, 360 (1985).

    Google Scholar 

  40. H. A. Kastrup:Phys. Rep.,101, 1 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Langer:Ann. Phys. (N. Y.),54, 258 (1969).

    Article  ADS  Google Scholar 

  42. V. P. Scripov andV. P. Koverda:Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984).

    Google Scholar 

  43. A. Nitzan:Phys. Rev. A,17, 1513 (1978).

    Article  ADS  Google Scholar 

  44. I. Prigogine andK. Lefever:J. Chem. Phys.,48, 1695 (1968).

    Article  ADS  Google Scholar 

  45. R. Schranner, S. Grossmann andP. H. Richter:Z. Phys. B,35, 363 (1979);

    Article  MathSciNet  ADS  Google Scholar 

  46. Y. Kuramoto andT. Tsuzuki:Prog. Theor. Phys.,54, 60 (1975);

    Article  ADS  Google Scholar 

  47. N. G. Van Kampen:Adv. Chem. Phys.,34, 245 (1976);

    Google Scholar 

  48. D. Walgraef, G. Dewel andP. Borckmans:Phys. Rev. A,21, 397 (1980).

    Article  ADS  Google Scholar 

  49. A.I. Oparin:The Chemical Origin of Life (Springfield, III., 1964);J. D. Bernal:The Origin of Life (Weidenfeld and Nicolson, London, 1967);C. E. Folsome:The Origin of Life (Freeman, San Francisco, Cal., 1979).

  50. V. I. Vernadskii:Biosphere (Mysl’, Moscow, 1967);Living Matter (Nauka, Moscow, 1978);Selected Topics on Geochemistry (Nauka, Moscow, 1983).

    Google Scholar 

  51. I. I. Shmal’gauzen:Ways and Laws of Evolution Process (Nauka, Moscow, 1983);

    Google Scholar 

  52. Yu. M. Sverezev andV. P. Pasekov:Foundations of Mathematical Genetics (Nauka, Moscow, 1982).

  53. A. J. Lichtenberg andM. A. Lieberman:Regular and Stochastic Motion (Springer, New York, N. Y., 1983).

    Book  MATH  Google Scholar 

  54. C. W. F. McClare:J. Theor. Biol.,35, 569 (1972);

    Article  Google Scholar 

  55. D. Markowitz andR. M. Nisbet:J. Theor. Biol.,39, 653 (1973);

    Article  Google Scholar 

  56. S. P. Gabuda andA. F. Rzavin:NMR in Crystallohydrates and Hydrated Proteins (Nauka, Novosibirsk, 1978);

  57. S. P. Gabuda:Confined Water: Facts and Hypothesis (Nauka, Novosibirsk, 1982).

  58. P. Cappuccinelli:Motility of Living Cells (Chapman and Hall, London, 1980).

    Book  Google Scholar 

  59. S. W. Kuffler andJ. G. Nicholls:From Neuron to Brain: a Celluar Approach to the Function of the Nervous System (Sinauer Associates, Inc. Publishers, New York, N. Y., 1976); B. Hill:Annu. Rev. Physiol.,38, 139 (1978); C. F. Stevens: Sci.Am.,241, 54 (1979).

    Google Scholar 

  60. N. Wiener:Cybernetics and Society (Eyre and Spottiswoode, London, 1954), Chapt. 5.

    Google Scholar 

  61. W. Feller:An Introduction to Probability Theory and Its Applications, Vol.1 (Wiley, New York, N. Y., 1970).

    Google Scholar 

  62. Yu. A. Klimontovich:Kinetic Theory of Non-Ideal Plasma and Non-Ideal Qas (Nauka, Moscow, 1975);Statistical Physics (Nauka, Moscow, 1982).

    Google Scholar 

  63. F. Spitzer:Principles of Random Wall (Springer, New York, N. Y., 1976).

    Book  Google Scholar 

  64. V. S. Vladimirov:Equations of Mathematical Physics (Nauka, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Traduzione a cura della Redagione

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chechetkin, V.E., Lutovinov, V.S. Continuous stochastic approach to birth and death processes and co-operative behaviour of systems far from equilibrium. Nuov Cim B 95, 1–54 (1986). https://doi.org/10.1007/BF02749000

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02749000

PACS

Navigation