Skip to main content
Log in

Decay of152Eu and the unified nuclear model

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

The radiations from152Eu (t1/2=13 yrs) were investigated using an intermediate image spectrometer, a magnetic thin lens spectrometer and a coincidence scintillation spectrometer. Three β--groups are present with end-points (1450±25), (1040 ±20), (710±20)keV; the highest energy group exhibits an α-shape. γ-ray investigations showed that the following γ-rays are present: 101 (5), 121 (88), 244 (30), 315 (4), 344 (100), 410 (9), 442 (4), 710 (13), 770 (77), 888 (14), 970 (89), 1090 (96), 1127 (96) and 1410 (135) keV.K-conversion coefficients were estimated for most of these transitions and multipole orders were assigned. X-ray-γ, γ-γ and β-γ coincidence experiments allow us to construct the decay scheme of152Eu. The difference in level structure in152Sm (N=90) and152Gd (N =88) is evident from the experimental results. The first three excited states at 121, 365 and 807 keV in152Sm are identified as the three members of the ground state rotational band (K=0) ; the levels at 1090 and 1248 keV havingI= 2 +, and 3 + respectively are shown to be the quadrupole γ-vibrational states corresponding to K=2. The highest excited state in152Sm is at 1417 keV and is most likely fed entirely byL-capture; this is the only odd-parity state in152Sm having the character I=1-. The levels in152Gd at 344 and 754 keV both with I=2 +, reached by β--decay, are characteristic of the collective vibrations of the electric quadrupole type about a spherical equilibrium shape. The level at 1114keV in152Gd has the character I=— and is interpreted as due to the octupole vibrations. The ground state of152Eu has been assigned the spin I=4 -; the branching ratios and the transition probabilities for the β--groups and electron capture transitions have been calculated. The experimental results are consistent with the predictions of the Unified Nuclear Model.

Riassunto

Le radiazioni del152Eu (t1/2=13 anni) sono state studiate usando uno spettrometro a immagine intermedia, uno spettrometro a lente magnetica sottile e uno spettrometro a coincidenze a scintillazione. Si constatano tre gruppi β- terminanti a 1450±25, 1040±20, 710±20 keV; il gruppo di energia massima ha forma α. Opportune ricerche, mostrarono la presenza delle seguenti radiazioni γ: 101 (5), 121 (88), 244 (30), 315 (4), 344(100), 410(9), 442(4), 710(13), 770(77), 888(14), 970(89), 1190(96), 1027(96) e {dy1410} (135) kV. I coefficienti di conversioneK sono stati stimati per la maggior parte di queste transizioni e sono stati assegnati gli ordini dei multipoli. Esperienze di coincidenza raggi X-γ, γ-γ e β-γ ci permettono di costruire lo schema di decadimento del152Eu. La differenza nella struttura dei livelli del152Sm (N=90) e152Gd (N=88) risulta evidente dai risultati sperimentali. I primi tre stati eccitati del152Sm a 121, 365 e 807 keV si identiflcano come le tre parti della banda rotazionale dello stato fondamentale (K = 0); i livelli a 1090 e 1248 keV conI = 2 +, e 3+ rispettivamente, si dimostrano essere gli stati vibrazionali γ di quadrupolo corrispondenti a K=2. Lo stato eccitato più elevato del152Sm si trova a 1417 keV ed è probabilmente alimentato completamente per catturaL; è questo l’unico stato con parità dispari del152Sm avente carattere I=1-. I livelli del152Gd a 344 e 754 keV, ambi con I=2+, raggiunti col decadimento β- sono caratteristici delle vibrazioni collettive di tipo quadrupolo elettrico intorno a una configurazione d’equilibrio sferica. Il livello a {dy1114} keV del152Gd ha caratteristica I=— e si ritiene dovuto alle vibrazioni da ottupolo. Allo stato fondamentale del152Eu è stato assegnato lo spin I=4-; si sono calcolati i rapporti e le probabilità di transizione per i gruppi β- e le transizioni per cattura elettronica. I risultati sperimentali si accordano con le previsioni del modello nucleare unificato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Slattery, D. C. Lu andM. L. Wiedenbeck:Phys. Rev.,99, 1615 (1955).

    Article  Google Scholar 

  2. L. Grodzins:Bull. Am. Phys. Soc.,1, 163 (1956).

    Google Scholar 

  3. O. Nathan andM. A. Waggoner:Nuclear Phys.,2, 548 (1957).

    Article  ADS  Google Scholar 

  4. S. K. Bhattacherjee andS. Raman:Nuclear Phys.,4, 44 (1957).

    Article  ADS  Google Scholar 

  5. K. Alder, A. Bohr, T. Huus, B. Mottelson andA. Winther:Rev. Mod. Phys.,28, 523 (1956).

    Article  MathSciNet  Google Scholar 

  6. P. Brix andH. Kopfermann:Phys. Rev.,85, 1050 (1952).

    Article  ADS  Google Scholar 

  7. P. Brix:Zeits. Phys.,132, 579 (1952).

    Article  ADS  Google Scholar 

  8. N. P. Heydenberg andG. M. Temmer:Phys. Rev.,100, 150 (1955).

    Article  ADS  Google Scholar 

  9. W. H. Johnson andA. O. Nier:Phys. Rev.,105, 1014 (1957).

    Article  ADS  Google Scholar 

  10. B. R. Mottelson andS. G. Nilsson:Phys. Rev.,99, 1615 (1955).

    Article  ADS  Google Scholar 

  11. J. M. Cork, M. K. Brice, R. G. Helmer andD. E. Sarason:Bull. Am. Phys. Soc.,2, No. 1, E316 (1957).

    Google Scholar 

  12. T. D. Nainan, H. G. Deware andA. Mukerji:Proc. Ind. Acad. Sc.,44, 111 (1956).

    Google Scholar 

  13. J. M. Hill andL. R. Shephard:Proc. Phys. Soc., A63, 126 (1950).

    Article  ADS  Google Scholar 

  14. M. E. Rose, G. H. Goertzel andC. L. Perry: ORNL-report 1023 (1951).

  15. A. W. Sunyar:Phys. Rev.,98, 653 (1955).

    Article  ADS  Google Scholar 

  16. L. Grodzins andH. Kendall:Bull. Am. Phys. Soc.,1, No. 4, 164B11 (1956).

    Google Scholar 

  17. G. Scharff-Goldhaber andJ. Weneser:Phys. Rev.,98, 212 (1955).

    Article  ADS  Google Scholar 

  18. F. S. Stephens, P. Asaro andI. Perlman:Phys. Rev.,96, 1568 (1954).

    Article  ADS  Google Scholar 

  19. L. Grodzins:Bull. Am. Phys. Soc.,1, No. 7, 329J7 (1956).

    Google Scholar 

  20. G. Alaga, K. Alder, A. Bohr andB. R. Mottelson:Kgl. Danske Videnskab. Selskab. Mat. fys. Medd.,29, No. 9 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacherjee, S.K., Nainan, T.D., Raman, S. et al. Decay of152Eu and the unified nuclear model. Nuovo Cim 7, 501–523 (1958). https://doi.org/10.1007/BF02747764

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02747764

Navigation