Bulletin of Materials Science

, Volume 20, Issue 6, pp 845–878 | Cite as

Monte Carlo and molecular dynamics simulation of argon clusters andn-alkanes in the confined regions of zeolites

  • Chitra Rajappa
  • Sanjoy Bandyopadhyay
  • Yashonath Subramanian
India-Japan Seminar On New Materials


Geometry and energy of argon clusters confined in zeolite NaCaA are compared with those of free clusters. Results indicate the possible existence of magic numbers among the confined clusters. Spectra obtained from instantaneous normal mode analysis of free and confined clusters give a larger percentage of imaginary frequencies for the latter indicating that the confined cluster atoms populate the saddle points of the potential energy surface significantly. The variation of the percentage of imaginary frequencies with temperature during melting is akin to the variation of other properties. It is shown that confined clusters might exhibit inverse surface melting, unlike medium-to-large-sized free clusters that exhibit surface melting. Configurational-bias Monte Carlo (CBMC) simulations ofn-alkanes in zeolites Y and A are reported. CBMC method gives reliable estimates of the properties relating to the conformation of molecules. Changes in the conformational properties ofn-butane and other longern-alkanes such asn-hexane andn-heptane when they are confined in different zeolites are presented. The changes in the conformational properties ofn-butane andn-hexane with temperature and concentration is discussed. In general, in zeolite Y as well as A, there is significant enhancement of thegauche population as compared to the pure unconfined fluid.


Argon clusters n-alkanes zeolites Monte Carlo molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams J E and Stratt R M 1990aJ. Chem. Phys. 93 1332CrossRefGoogle Scholar
  2. Adams J E and Stratt R M 1990bJ. Chem. Phys. 93 1358CrossRefGoogle Scholar
  3. Adams J E and Stratt R M 1990cJ. Chem. Phys. 93 1632CrossRefGoogle Scholar
  4. Allen M P and Tildesley D J 1987Computer simulation of liquids (Oxford: Clarendon Press)Google Scholar
  5. Bandyopadhyay S and Yashonath S 1997J. Phys. Chem. (communicated)Google Scholar
  6. Beck T L and Marchioro Tl II 1990.J. Chem. Phys. 93 1347CrossRefGoogle Scholar
  7. Berry R S 1994J. Phys. Chem. 98 6910CrossRefGoogle Scholar
  8. Berry R S and Cheng H-P 1992Physics and chemistry of finite systems: From clusters to crystals (Kluwer Academic Pub.) Vol. 1, p. 277Google Scholar
  9. Chitra R and Yashonath S 1997J. Phys. Chem. B101 389Google Scholar
  10. Cheng H-P and Berry R S 1992Phys. Rev. A45 7969Google Scholar
  11. Chmelka B F, Raftery D, McCormick A V, de Menorval L C, Levine R D and Pines A 1991Phys. Rev. Lett. 66 580CrossRefGoogle Scholar
  12. Davis H L, Jellinek J and Berry R S 1987J. Chem. Phys. 86 6456CrossRefGoogle Scholar
  13. Etters R D and Kaelberer J 1977J. Chem. Phys. 66 5112CrossRefGoogle Scholar
  14. Fitch A N, Jobic H and Renouprez A 1986J. Phys. Chem. 90 1311CrossRefGoogle Scholar
  15. Frantz D D 1995J. Chem. Phys. 102 3747CrossRefGoogle Scholar
  16. Frenkel D, Mooij G C A M and Smit B 1992J. Phys.: Condens. Matter 4 3053CrossRefGoogle Scholar
  17. Harris J and Rice S A 1988J. Chem. Phys. 88 1298CrossRefGoogle Scholar
  18. Heink W, Karger J, Pfeifer H, Salverda P, Datema K P and Nowak A 1992J. Chem. Soc. Faraday Trans. 88 515CrossRefGoogle Scholar
  19. Henson N J, Cheetham A K, Peterson B K, Pickett S D and Thomas J M 1993J. Computer-Aided Mater. Design 1 41CrossRefGoogle Scholar
  20. Hernandez E and Catlow C R A 1995Proc. R. Soc. London A448 143Google Scholar
  21. Hoare M R and Pal P 1970Nature 230 5Google Scholar
  22. Honeycutt J D and Andersen H C 1987J. Phys. Chem. 91 4950CrossRefGoogle Scholar
  23. Inglesfield E J 1982 inComputer simulation of solids (eds) C R A Catlow and W C Mackrodt (Berlin: Springer Verlag)Google Scholar
  24. Jorgensen W L, Madura J D and Swenson C J 1984J. Am. Chem. Soc. 106 6638CrossRefGoogle Scholar
  25. June R L, Bell A T and Theodorou D N 1990J. Phys. Chem. 94 1508CrossRefGoogle Scholar
  26. June R L, Bell A T and Theodorou D N 1992J. Phys. Chem. 96 1051CrossRefGoogle Scholar
  27. Karger J and Ruthven D M 1992Diffusion in zeolites and other microporous solids (New York: John Wiley & Sons)Google Scholar
  28. Karger J, Pfeifer H, Rauscher M and Walter A 1980J. Chem. Soc. Faraday Trans. I 76 717CrossRefGoogle Scholar
  29. Kirkpatrick K S, Gelatt C D and Vecchi M P 1983Science 220 671CrossRefGoogle Scholar
  30. Kiselev A V and Du P Q 1981J. Chem. Soc. Faraday Trans. II 77 1CrossRefGoogle Scholar
  31. Kunz R E and Berry R S 1993Phys. Rev. Lett. 71 3987CrossRefGoogle Scholar
  32. Laso M, de Pablo J J and Suter U W 1992J. Chem. Phys. 96 2817CrossRefGoogle Scholar
  33. Li F-Y and Berry R S 1995aJ. Phys. Chem. 99 2459CrossRefGoogle Scholar
  34. Li F-Y and Berry R S 1995bJ. Phys. Chem. 99 15557CrossRefGoogle Scholar
  35. Maginn E J, Bell A T and Theodorou D N 1995J. Phys. Chem. 99 2057CrossRefGoogle Scholar
  36. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A and Teller E 1953J. Chem. Phys. 21 1087CrossRefGoogle Scholar
  37. Mooij G C A M, Frenkel D and Smit B 1992J. Phys: Condens. Matter 4 L255Google Scholar
  38. Nauchitel V V and Pertsin A J 1980Mol. Phys. 40 1341CrossRefGoogle Scholar
  39. de Pablo J J, Laso M and Suter U W 1992J. Chem. Phys. 96 6157CrossRefGoogle Scholar
  40. de Pablo J J, Laso M, Suter U W and Cochran H D 1993Fluid Phase Equilib. 83 323CrossRefGoogle Scholar
  41. Pluth J J and Smith J V 1980J. Am. Chem. Soc. 102 4704CrossRefGoogle Scholar
  42. Quirke N and Sheng P 1984Chem. Phys. Lett. 110 63CrossRefGoogle Scholar
  43. Richards R E and Rees L V C 1987Langmuir 3 335CrossRefGoogle Scholar
  44. Rosenbluth M N and Rosenbluth A W 1955J. Chem. Phys. 23 356CrossRefGoogle Scholar
  45. Santikary P, Yashonath S and Ananthakrishna G 1992J. Phys. Chem. 96 10469CrossRefGoogle Scholar
  46. Seeley G and Keyes T 1989J. Chem. Phys. 91 5581CrossRefGoogle Scholar
  47. Siepmann J I and Frenkel D 1992Mol. Phys. 75 59CrossRefGoogle Scholar
  48. Siepmann J I, Karaborni S and Smit B 1993aNature 365 330CrossRefGoogle Scholar
  49. Siepmann J I, Karaborni S and Smit B 1993bJ. Am. Chem. Soc. 115 6454CrossRefGoogle Scholar
  50. Smit B and Siepmann J I 1994aJ. Phys. Chem. 98 8442CrossRefGoogle Scholar
  51. Smit B and Siepmann J I 1994bScience 264 1118CrossRefGoogle Scholar
  52. Thamm H 1987Zeolites 7 341CrossRefGoogle Scholar
  53. Van der Ploeg P and Berendsen H J C 1982J. Chem. Phys. 76 3271CrossRefGoogle Scholar
  54. Wright P A, Thomas J M, Cheetham A K and Nowak A K 1985Nature 318 611CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1997

Authors and Affiliations

  • Chitra Rajappa
    • 1
  • Sanjoy Bandyopadhyay
    • 1
  • Yashonath Subramanian
    • 1
    • 2
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations