Skip to main content
Log in

Study on steel corrosion in different seabed sediments

  • Corrosion Of Materials
  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A series of simulation experiments on carbon steel (A3 steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0·12 mm/a, approximately equal to that of steel plates in marine atmosphere.

The test results showed that the corrosion rates of A3 and 16 Mn steel in marine environment were in the order: MA>SW>SBS by the IHP method; and MA>SBS>SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Hou, B. Study on steel corrosion in different seabed sediments. Bull Mater Sci 22, 1037–1040 (1999). https://doi.org/10.1007/BF02745617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02745617

Keywords

Navigation