Skip to main content

Computational condensed matter physics

Abstract

In the high pressure laboratory at BARC, we are pursuing a program to study the behaviour of materials under static and dynamic pressures. Theoretical component has been an integral part for guiding and interpreting new experiments. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperatures and matter densities. With the advent of diamond anvil cell device and the simultaneous provision for laser heating of the compressed samples for static high pressure studies, and with the improvements of the diagnostic techniques in dynamic shock methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Often these efforts have led to intense experimental studies and sometimes helped in resolving the controversies in data. We adopted the first principles electronic structure calculations for high pressure studies. Our work on the electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on Nb and other compounds like intermetallics and borocarbides have revealed interesting electronic structure changes under pressure. However, the electronic structure based investigations of structural stabilities at high pressures involve tedious trial and error effort, which is avoided in theab initio molecular dynamics simulations. The current status of our efforts in the use of this technique is illustrated with the example of quasicrystal based clusters.

This is a preview of subscription content, access via your institution.

References

  • Akahama Y, Kobayashi M and Kawamura H 1991 inRecent trends in high pressure research (ed.) A K Singh (New York: Interscience) p. 131

    Google Scholar 

  • Alleno E, Neumeier J J, Thompson J D, Canfield P C and Cho B K 1995Physica C229 169

    Google Scholar 

  • Anderson J R, Papaconstantopoulos D A and Schirber J E 1981Phys. Rev. B24 6790

    Google Scholar 

  • Andersen O K 1975Phys. Rev. B12 3060

    Google Scholar 

  • Andersen O K and Jepsen O 1984Phys. Rev. Lett. 53 2571

    Article  CAS  Google Scholar 

  • Bachelet G B, Hamann D R and Schluter M 1982Phys. Rev. B26 4199

    Google Scholar 

  • Car R and Parrinello M 1985Phys. Rev. Lett. 55 2471

    Article  CAS  Google Scholar 

  • Cava R Jet al 1994Nature 367 252

    Article  CAS  Google Scholar 

  • Chidambaram R 1996J. Indian Inst. Sci. 76 437

    CAS  Google Scholar 

  • Chidambaram R 1999 (to be published)

  • Christensen N E 1985Phys. Rev. B32 207

    Google Scholar 

  • Dagens L 1978J. Phys. F Metal Phys. 8 2093

    Article  CAS  Google Scholar 

  • Descotes L and Bichara C 1995J. Non-cryst. Solids 192–193 627

    Article  Google Scholar 

  • Fast L, Ahuja R, Nordstrom L, Wills J M, Johansson B and Eriksson O 1997Phys. Rev. Lett. 79 2301

    Article  CAS  Google Scholar 

  • Focher P, Chiarotti G L, Bernasconi M, Tosatti E and Parrinello M 1994Europhys. Lett. 36 345

    Article  Google Scholar 

  • Godwal B K 1983Phys. Rev. A28 1103

    Google Scholar 

  • Godwal B K 1995aCurr. Sci. 68 1087

    Google Scholar 

  • Godwal B K 1995bFrom astronomy to astrophysics (eds) B Sinha and M Bhattacharya (Calcutta: Saha Institute of Nuclear Physics) p. 85

    Google Scholar 

  • Godwal B K, Ng A and Dasilva L 1990Phys. Lett. A144 26

    Google Scholar 

  • Godwal B K, Sikka S K and Chidambaram R 1979Phys. Rev. B20 2362

    Google Scholar 

  • Godwal B K, Sikka S K and Chidambaram R 1981Phys. Rev. Lett. 47 1144

    Article  CAS  Google Scholar 

  • Godwal B K, Sikka S K and Chidambaram R 1983Phys. Rep. 102 121

    Article  CAS  Google Scholar 

  • Godwal B K, Jayaraman A, Meenakshi S, Rao R S, Sikka S K and Vijayakumar V 1997aPhys. Rev. B56 14871

    Google Scholar 

  • Godwal B K, Rao R S, Sikka S K and Chidambaram R 1997b inAdvances in high pressure research in condensed matter (eds) S K Sikka, S C Gupta and B K Godwal (New Delhi: Natl. Inst. of Sci. Commun.) p. 45

    Google Scholar 

  • Godwal B K, Meenakshi S and Rao R S 1997cPhys. Rev. B56 14871

    Google Scholar 

  • Guryan C A, Stephens P W, Goldman A I and Gayle F W 1988Phys. Rev. B37 8495

    Google Scholar 

  • Hedin L and Lundquist B I 1971J. Phys. C4 2064

    Google Scholar 

  • Hedin L and Lundquist B I 1972J. Phys. C5 1629

    Google Scholar 

  • Henley C L and Elser V 1986Philos. Mag. B53 L59

  • Jagadeesh B S, Rao R S and Godwal B K 1996 inHigh performance computing (eds) S Sahni, V K Prasanna and V P Bhatkar (New Delhi: Tata McGraw-Hill) p. 175

    Google Scholar 

  • Jayaraman A 1983Rev. Mod. Phys. 55 65

    Article  CAS  Google Scholar 

  • Jeanloz R 1987J. Geophys. Res. 92 10352

    Google Scholar 

  • Johansson B, Ahuja R, Eriksson O and Wills J M 1995Phys. Rev. Lett. 75 280

    Article  CAS  Google Scholar 

  • Kagan Yu, Pushkarev V V and Holas A 1983Zh. Eksp. Teor. Fiz. 84 1494 (Sov. Phys. JETP 57 870)

    CAS  Google Scholar 

  • Kinslow R (ed.) 1970High velocity impact phenomena (NY: Academic Press)

    Google Scholar 

  • Kirkpatrick S, Gelatt G D Jr. and Vecchi M P 1983Science 220 671

    Article  CAS  Google Scholar 

  • Klotz S, Braden M and Besson J M 1998Phys. Rev. Lett. 81 1239

    Article  CAS  Google Scholar 

  • Koehnlein D 1968Z. Phys. 208 142

    Article  CAS  Google Scholar 

  • Kohn W 1959Phys. Rev. Lett. 2 393

    Article  CAS  Google Scholar 

  • Kohn W and Sham L J 1965Phys. Rev. 140 A1133

  • Lifshitz I M 1960Sov. Phys. JETP 11 1130 [J. Expt. Theor. Phys. 38 1569]

    Google Scholar 

  • Lynch R W and Drickamer H G 1965J. Phys. Chem. Solids 26 63

    Article  CAS  Google Scholar 

  • Mao H K and Hemley R 1994Rev. Mod. Phys. 66 671

    Article  CAS  Google Scholar 

  • Mattheiss L F 1970Phys. Rev. B1 373

    Google Scholar 

  • Mattheiss L F, Siegrist T and Cava R J 1994Solid State Commun. 91 587

    Article  CAS  Google Scholar 

  • Mazumdar C, Nagarajan R and Godart C 1993Solid State Commun. 87 413

    Article  CAS  Google Scholar 

  • McCarthy S L 1965 Lawrence Livermore Laboratory Report UCRL p. 4364

  • Meenakshi S, Vijayakumar V, Godwal B K and Sikka S K 1992Phys. Rev. 46 14359

    CAS  Article  Google Scholar 

  • Meenakshi S, Vijayakumar V, Godwal B K, Sikka S K, Hossain Z, Nagarajan R, Gupta L C and Vijayaraghavan R 1996Physica B223 & 224 93

    Google Scholar 

  • Meenakshi Set al 1998Phys. Rev. B58 3377

    Google Scholar 

  • Methfessel M 1988Phys. Rev. B38 1537

    Google Scholar 

  • Morgan J G, Von Dreele R B, Wochner P and Shapiro S M 1996Phys. Rev. B54 812

    Google Scholar 

  • Nagarajan Ret al 1994Phys. Rev. Lett. 72 274

    Article  CAS  Google Scholar 

  • Novikov D L, Freeman A J, Christensen N E, Svane A and Rodriguez C O 1997Phys. Rev. B56 7206

    Google Scholar 

  • Palanivel B, Rao R S and Godwal B K 1999 (to be published)

  • Pearson M, Smargiassi E and Madden P A 1993J. Phys. Condens. Matter 5 3221

    Article  CAS  Google Scholar 

  • Perdue J P, Burke K and Ernzerhof M 1996Phys. Rev. Lett. 77 3865

    Article  Google Scholar 

  • Potzel W, Steiner M, Karzel H, Schiessl W, Kofferlein M, Kalvius G M and Blaha P 1995Phys. Rev. Lett. 74 1139

    Article  CAS  Google Scholar 

  • Rao R S, Godwal B K and Sikka S K 1992Phys. Rev. B46 5780

    Google Scholar 

  • Rao R S, Godwal B K and Sikka S K 1994Phys. Rev. B50 15632

    Google Scholar 

  • Rose J H, Smith J R, Guinea F and Ferrante J 1984Phys. Rev. B29 2963

    Google Scholar 

  • Rouse C A (ed.) 1971Prog. high temp. phys. and chem. (New York and London: Pergamon Press) Vol.4, p. 139

    Google Scholar 

  • Schmidt H and Braun H F 1994Physica C229 315

    Google Scholar 

  • Schulte O, Nikolaenko A and Holzapfel W B 1991High Pressure Res. 6 169

    Article  Google Scholar 

  • Shah V, Nehete D and Kanhere D G 1994J. Phys.: Condens. Matter 6 10773

    Article  CAS  Google Scholar 

  • Sikka S K, Godwal B K and Chidambaram R 1997 inHigh pressure shock compression of condensed matter (eds) Davison and Sahinpoor (New York, Berlin, Heidelberg: Springer Verlag) p. 1

    Google Scholar 

  • Sikka S K 1988Phys. Rev. B38 8463

    Google Scholar 

  • Skriver H L 1984The LMTO method (Berlin: Springer)

    Google Scholar 

  • Smargiassi E and Madden P A 1994Phys. Rev. B49 5220

    Google Scholar 

  • Steiner M, Potzel W, Karzel H, Schiessl W, Kfferlein M, Kalvius G M and Blaha P 1996J. Phys.: Condens. Matter 8 3581

    Article  CAS  Google Scholar 

  • Storm A R, Wernick J H and Jayaraman A 1996J. Phys. Chem. Solids 27 1227

    Article  Google Scholar 

  • Struzhkin V V, Timofeev Y A, Hemley R J and Mao H 1997Phys. Rev. Lett. 21 4262

    Article  Google Scholar 

  • Takemura K 1995Phys. Rev. Lett. 75 1807

    Article  Google Scholar 

  • Takemura K 1997Phys. Rev. B56 5170

    Google Scholar 

  • Vijayakumar V, Rao R S and Godwal B K 1997 inAdvances in high pressure research in condensed matter (eds) S K Sikka, S C Gupta and B K Godwal (New Delhi: Natl. Inst. of Sci. Commun.) p. 318

    Google Scholar 

  • Vohra Y K and Akella J 1991Phys. Rev. Lett. 67 3563

    Article  CAS  Google Scholar 

  • Vohra Y K and Holzapfel W B 1993High Pressure Res. 11 223

    Article  Google Scholar 

  • Volkov A P, Voloshin N P, Vladimira A S, Nogin V N and Simonenko V A 1980Pls’ma Zh. Eksp. Teor. Fiz. 31 623;JETP Lett. 31 588 (1980)

    CAS  Google Scholar 

  • Wills J M and Cooper B R 1987Phys. Rev. B36 3809

    Google Scholar 

  • Zel’dovich Ya B and Raizer Yu P 1967Physics of shock waves and high temperature hydrodynamic phenomena (New York: Academic Press) Vols 1 & 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Godwal, B.K. Computational condensed matter physics. Bull Mater Sci 22, 877–884 (1999). https://doi.org/10.1007/BF02745548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02745548

Keywords

  • Pressure
  • electronic topological transition
  • equation of state