Il Nuovo Cimento Series 10

, Volume 5, Supplement 2, pp 267–360

A survey of atomic constants

  • J. A. Bearden
  • J. S. Thomsen
Article

DOI: 10.1007/BF02745339

Cite this article as:
Bearden, J.A. & Thomsen, J.S. Nuovo Cim (1957) 5(Suppl 2): 267. doi:10.1007/BF02745339

Nomenclature

α =2πe2/hc

Fine structure constant

B

Magnetic induction (gauss)

c

Velocity of light (cm/s unless otherwise stated)

e

Electronic charge (esu)

e/c

Electronic charge (emu)

F =Ne/c

Faraday constant

γp = 4πμp/h

Gyromagnetic ratio of proton

γp

Apparent gyromagnetic ratio of proton in oil

H

Magnetic field strength (oersted)

h

Planck’s constant (erg s)

ħ

=h/2π

k

Boltzmann constant

λ

Wave-length (cm)

λgs

Conversion factor from Siegbahn scale to absolute units, i.e.,. 1 XU = (λgs) cm

λ’

Wave-lengths in terms of Siegbahn scale, i.e., λ’ = λcm/(λgg)

M

Atomic or molecular mass (amu)

Mp =Nmp

Atomic mass of proton

m

Mass of electron (g)

mp

Mass of proton (g)

μs.

Magnetic moment of electron (emu)

μn = eh/4πmpc

Nuclear magneton (emu)

μ0 = eh/4πmc

Bohr magneton (emu)

μp

Magnetic moment of proton (emu)

μp

Apparent magnetic moment of proton in oil

N

Avogadro’s number

v = ω/2π

Frequency (S-1)

vc, ve, vn

See ωc, ωe,ωn below

vH

Hyperfine splitting of hydrogen

R =Nk

Gas constant (erg/mole °C)

R∞ = 2π2me4/ch3

Rydberg constant for infinite mass

Rh = R∞[mp/(mp+m ]

Rydberg constant for hydrogen

V

Voltage (volt)

ωc = He/mpc

Cyclotron resonance frequency of proton (s-1)

ωe= He/ mc

Cyclotron resonance frequency of electron (s-1)

ωn = Hγp

Nuclear resonance frequency of proton (s-1)

Copyright information

© Società Italiana di Fisica 1957

Authors and Affiliations

  • J. A. Bearden
    • 1
  • J. S. Thomsen
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreMaryland

Personalised recommendations