Skip to main content
Log in

Thermal plasmas in material processing

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Thermal plasmas are partially ionized gases at atmospheric pressures, characterized by temperatures in the range of 2000–20,000 K and charged particle number densities in the range of 1019–1021 per m3. Thermal plasmas are produced by plasma torches as a highly constricted jet. The high temperatures, enthalpies and heat fluxes in the plasma jet make it amenable to many chemical and metallurgical processes of industrial importance. The processing environment can be inert as in the case of argon or nitrogen plasmas or can be made reactive by introducing suitable gases. Reactive thermal plasma processing is a novel technique, wherein the plasma enters the reaction scheme, with ions and excited species opening up new channels. This technique is versatile in producing a wide variety of materials like oxides, carbides, borides, aluminides and coatings of diamond, superconductors and bioceramics. In this paper, the basic design of the plasma devices and some of the significant materials-related activities carried out recently at BARC are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananthapadmanabhan P V, Sreekumar K P, Venkatramani N and Muraleedharan K V 1991Surf. Coat. Technol. 49 62

    Article  CAS  Google Scholar 

  • Ananthapadmanabhan P V, Sreekumar K P, Ravindran P V and Venkatramani N 1993Thin Solid Films 224 148

    Article  Google Scholar 

  • Ananthapadmanabhan P V, Sreekumar K P, Veeramani Iyer K and Venkatramani N 1994Mater. Chem. Phys. 38 15

    Article  CAS  Google Scholar 

  • Becker A J, Meyer T N, Smith F N and Edd J F 1987MRS Symp. Proc. 98 335

    CAS  Google Scholar 

  • Camacho S L 1988Pure & Appl. Chem. 60 619

    CAS  Google Scholar 

  • Chakravarthy D P, Madanmohan M S, Barve D N and Venkatramani N 1993 BARC Report BARC/1993/E/032, Bombay

  • Dembovsky V 1985Plasma metallurgy—The principles (Amsterdam: Elsevier)

    Google Scholar 

  • Fauchais P, Bourdin E, Coudert J F and McPherson R 1983Topics Curr. Chem. 107 59

    CAS  Google Scholar 

  • Feinmann J 1987Plasma technology in metallurgical industry (Warrendale: Iron & Steel Society)

    Google Scholar 

  • Karthikeyan J, Sreekumar K P, Venkatramani N, Kurup M B, Patil D S and Rohatgi V K 1989Appl. Phys. A: Solids and Surfaces 49 489

    Article  Google Scholar 

  • Knight R, Smith R W and Apelian D 1991Int. Mater. Rev. 36 221

    CAS  Google Scholar 

  • Nicoll A R, Gruner H, Wuest G and Keller S 1986Mater. Sci. Technol. 2 214

    CAS  Google Scholar 

  • Pfender E 1988Pure & Appl. Chem. 60 591

    CAS  Google Scholar 

  • Ramachandran K, Patil D S, Venkatramani N, Biswas A R, Venkateswaran S and D’Cunha R 1995Proc. int. conf. on vacuum science and technology (INCOVAST-95), Indore

  • Sears J W, Eschenbach R C and Hill R A 1990Waste Management 10 165

    Article  CAS  Google Scholar 

  • Sreekumar K P, Karthikeyan J, Ananthapadmanabhan P V, Venkatramani N and Chatterjee U K 1991 BARC Report 1551, Bombay

  • Venkatramani N, Chakravarthy D P, Barve D N and Rohatgi V K 19898th Int. Conf. on Plasma Physics, New Delhi

  • Zaat J H 1983Ann. Rev. Mater. Sci. 13 9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatramani, N. Thermal plasmas in material processing. Bull. Mater. Sci. 18, 741–754 (1995). https://doi.org/10.1007/BF02744808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744808

Keywords

Navigation