Skip to main content

Trends in radar absorbing materials technology

Abstract

The research in the area of Radar Absorbing Materials (RAMs) has been actively pursued for at least four decades. Although resonant RAMs were originally designed by transmission line approach, and the broad band RAMs were obtained by multilayering, the quest for ultrawide band performance has led to novel approaches such as chirality and even exploring biochemical products. It is observed that radome materials are frequently used as RAMs. The understanding of the underlying principles of electromagnetic analysis and design, fabrication and the trends in RAMs reviewed in this paper could lead to indigenisation, and even pioneering next generation of RAM technology.

This is a preview of subscription content, access via your institution.

References

  • Adam J A 1988 How to design an invisible aircraft.IEEE Spectrum (4): 26–31

  • Alexpoulos N G 1969 Radar cross section of perfectly conducting spheres coated with a certain class of radially inhomogeneous dielectrics.IEEE Trans. Antennas Propag. AP-17: 667–669

    Article  Google Scholar 

  • Amin M B, James J R 1981 Techniques for the utilization of hexagonal ferrites in radar absorbers, Part I.Radio Electron. Eng. 51: 209–218

    Article  Google Scholar 

  • Aoto T, Yoshida N, Fukai I 1987 Transient analysis of the electromagnetic field for a wave absorber in three-dimensional space.IEEE Trans. Electromagn. Compat. EMC-29: 18–23

    Article  Google Scholar 

  • Army Material Development and Readiness Command 1982 Radiation-resistant radar materials: Analytical and experimental study identifies materials potentially resistant to nuclear radiation damage. NTIS Tech Note, PB82970294XSP.

  • Arsaev I E 1982 Plane wave scattering by bodies of revolution.Radiotech. Electron. 27: 2101–2109

    Google Scholar 

  • Ashley S, Gilmore C P 1988 Stealth.Pop. Sci. (7): 46–51

  • Baker D E, van der Neut C A 1988 Reflection measurements of microwave absorbers.Microwave J. 31: 95–98

    Google Scholar 

  • Bastiere A 1989 Decision-making aid for multi-layer radar absorbent coverings. Tech. Rep. ESA-TT-1173, European Space Agency, Paris

    Google Scholar 

  • Bhattacharyya A K 1990 Radar cross section reduction of a flat plate by RAM coating.Microwave Opt. Technol. Lett. 3: 324–327

    Article  Google Scholar 

  • Bhattacharyya A K, Sengupta D L 1991Radar cross section analysis and control (Norwood MA: Artech House)

    Google Scholar 

  • Bhattacharyya A K, Tandon S K 1984 Radar cross section of a finite planar structure coated with a lossy dielectric.IEEE Trans. Antennas Propag. AP-32: 1003–1007

    Article  Google Scholar 

  • Blore W E 1964 The radar cross section of polyfoam towers.IEEE Trans. Antennas Propag. AP-12: 237–238

    Article  Google Scholar 

  • Bostick G 1985 Damping spurious microwave responses with absorbing materials.EMC Technol. 14(2): 21–27

    Google Scholar 

  • Bowman J J 1968 Effects of absorbers. InMethods of radar cross-section analysis (eds) J R Crispin, Jr K M Siegel (New York: Academic Press)

    Google Scholar 

  • Bowman J J, Weston V H 1966 The effect of curvature on the reflection coefficient of layered absorbers.IEEE Trans. Antennas Propag. AP-14: 760–767

    Article  Google Scholar 

  • Bradshaw P S 1989 Signature management and structural materials. InMaterials and processing-Move to the 90’s Proc. of SAMPE (Amsterdam: Elsevier Science) pp 187–196

    Google Scholar 

  • Brown A 1992 Fundamentals of stealth design.Lockheed Horizons 31(8): 6–12

    Google Scholar 

  • Brumley S 1987 Better RCS data with anechoic absorber characterization.Micro. RF 26: 143–148

    Google Scholar 

  • Cain R N, Corda A J 1991 Active radar stealth device. Patent 5 036 323, Dept. of the Navy, Washington DC

    Google Scholar 

  • Cheng Y B, Ostertag E L 1986 An absorber-wall parallel-plate waveguide.IEEE Trans. Microwave Theory Tech. MTT-34: 761–766

    Google Scholar 

  • Cherepanov A K 1974 Reflection of electromagnetic waves from an absorptive spiky surface.Radio Eng. Electron. Phys. 19: 120–123

    Google Scholar 

  • Chou R, Ling H, Lee S W 1987 Reduction of the radar cross section of arbitrarily shaped cavity structures. Tech. Rep. NASACR 180307, Illinois Univ., Urbana-Champaign

  • Chou R-C 1988 Modal attenuation in multilayered coated waveguides.IEEE Trans. Microwave Theory Tech MTT-36: 1167–1176

    Article  Google Scholar 

  • Cobucci F 1991 Building air superiority.Aerosp. Mater. Compos. 3: 16–19

    Google Scholar 

  • Curran J 1993 HP radar/EW testing solutions.HP RF and Microwave Test Symp. Bangalore

  • Davies P, Popplewell J, LLewellyn J P 1986 Microwave absorption in ferrofluid composites.IEEE Trans. Magn. MAG-22: 1131–1133

    Article  Google Scholar 

  • de Hoop A T 1981 Theorem on maximum absorption of electromagnetic radiation by a scattering object of bounded extend.Radio Sci. 16: 971–974

    Google Scholar 

  • Deleuze C 1992 Radar absorbing materials.Chocs 6: 15–29

    Google Scholar 

  • Emerson W H 1973 Electromagnetic wave absorbers, anechoic chambers through the years.IEEE Trans. Antennas Propag. AP-21: 484–490

    Article  Google Scholar 

  • Engheta N, Zablocky P G 1990 A step towards determining transient response of chiral materials - Kramers-Kronig relations for chiral parameters.Electron. Lett. 26: 2132–2134

    Article  Google Scholar 

  • Falkenbach G J 1965 Limitations in determining absorbing material parameters.Proc. IEEE 53: 1097–1098

    Google Scholar 

  • Fante R L, McCormack M T 1988 Reflection properties of the Salisbury screen.IEEE Trans. Antennas Propag. AP-36: 1443–1454

    Article  Google Scholar 

  • Fernandez A, Valenzula A 1985 General solution for single-layer electromagnetic wave absorber.Electron. Lett. 21: 20–21

    Article  Google Scholar 

  • Gauss A 1982 A new method of EM absorbing coating. Tech. Rep., AD A117472, Ballistic Research Lab., Aberdeen Proving Ground, MD

  • Ginzton E L 1957Microwave measurements (New York: McGraw Hill)

    Google Scholar 

  • Guillot T 1992Contribution to the modelling of the electromagnetic properties of random dielectric-conductor mixtures. Ph D thesis (Rep. ETN-93-93046), Office National d’Etudes et de Recherches Aerospatiales, Paris

    Google Scholar 

  • Guillot T, Bobillot G 1991 Microwave measurement of the electrical conductivity of an elementary grain of a conducting powder. ONERA Tech. Rep. TP 1991-40 Paris

  • Hahn H T 1991 The variation of permeability with ferrite file density.J. Appl. Phys. B69: 6195–6197

    Article  Google Scholar 

  • Halpren O, Johnson M J Jr Radar summary report of Harp project. OSRD Div 14, vol. 1 (part π), ch. 9–12

  • Hanson R L, Kiehle M H 1982 Performance considerations in the design of subsonic missile.AIAA Aerosp. Sci. 20th Meeting (Paper No. 82-0371)

  • Harrington J J 1987 Missile decoy radar cross section enhancer. Patent NTIS ADD0135608XSP, Department of the Air Force, Washington DC

    Google Scholar 

  • Hatakeyama K, Inui T 1984 Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers.IEEE Trans. Magn. MAG-20: 1261–1263

    Article  Google Scholar 

  • He J, Lu Z, Su Y 1992 Experimental investigation on the ultra-wideband radar characteristics of coating RAMs targets.IEE Proc. Int. Conf. London: pp. 493–496

  • Hemmati H, Mathur J C, Eichhorn W L 1985 Submillimeter and millimeter wave characterization of absorbing materials.Appl. Opt. 24: 4489–4492

    Article  Google Scholar 

  • Hempel K A, Roos W 1981 Microwave absorption along minor hysterisis loops of single domain particles with uniaxial magnetic anisotropy.IEEE Trans. Magn. MAG-17: 2642–2644

    Article  Google Scholar 

  • Holland R, Cho K S 1986 Radar cross-section of damped cylinders and dielectric strips. Tech. Rep. APITR129 (Applied Physics Inc. Albuquerque NM)

    Google Scholar 

  • Hurmuth H F 1983 On the effect of absorbing materials on electromagnetic waves with large relative bandwidth.IEEE Trans. Electromagn. Compat. EMC-25: 32–39

    Article  Google Scholar 

  • Jaggard D L, Engheta N 1989 Chirosorb as an invisible medium.Electron. Lett. 25: 173–174

    Article  Google Scholar 

  • Jaggard D L, Engheta N, Liu J 1990 Chiroshield — a Salisbury/Dallenbach shield alternative.Electron. Lett. 26: 1332–1334

    Article  Google Scholar 

  • Jaggard D L, Liu J C, Sun X 1991 Spherical chiroshield.Electron. Lett. 27: 77–79

    Article  Google Scholar 

  • Jones A K, Wooding E R 1964 A multilayer microwave absorber.IEEE Trans. Antennas Propag. AP-12: 508–509

    Article  Google Scholar 

  • Joseph P J 1988U TD (Uniform geometrical theory of diffraction) scattering analysis of pyramidal absorber for design of compact range chambers. Master’s thesis (AFITCINR88193), Air Force Inst. of Technol., Wright-Patterson AFB OH

  • Kashiwa T, Yoshida N, Fukai I 1990 Simulation of the reduction characteristics of scattering from an aircraft coated with a thin-type absorber by the spatial network method.Electron. Lett. 26: 289–290

    Article  Google Scholar 

  • Kent B 1982 An automated dual horn-reflector microwave absorber measurement system. Tech. Rep. AFWALTR811284 (Air Force Wright Aeronautical Labs Wright-Patterson AFB, OH.) Vol I

  • Knott E F 1979 The thickness criterion for single layer radar absorbers.IEEE Trans. Antennas Propag. AP-27: 698–701

    Article  Google Scholar 

  • Knott E F, Shaeffer J F, Tuley M T 1985Radar cross section (Norwood MA: Artech House)

    Google Scholar 

  • Kong J A 1975Theory of electromagnetic waves (New York: Wiley Interscience)

    Google Scholar 

  • Kumar A 1987 Acetylene black-A single-layer microwave absorbers.Electron. Lett. 23: 184–185

    Article  Google Scholar 

  • Kumar P M 1994 EM design aspects of airborne radomes. Project Report, National Aerospace Laboratories, Bangalore

  • Kumar P M, Vinoy K J, Jha R M 1994 An indexed database of radome (1960–1993). NAL Project Document PD AL 9405, National Aerospace Laboratories, Bangalore

    Google Scholar 

  • Lee C S, Lee S W, Chuang S L 1986 Normal modes in an overmoded circular waveguide coated with lossy materials.IEEE Trans. Microwave Theory Tech. MTT-34: 773–785

    Article  Google Scholar 

  • Lee S W, Lo Y T, Chuang S L, Lee C S 1985 Numerical methods for analyzing electromagnetic scattering. Semiann. Rep., NAS126176141, Illinois Univ., Urbana-Champaign

  • Lehto A, Tourinen J, Raisanen A 1991 Reflectivity of absorbers in 100–200 GHz range.Electron. Lett. 27: 1699–1700

    Article  Google Scholar 

  • Leontovich M A 1957 Appendix of diffraction, refraction and reflection of radio waves. Rep. AD 117276 (US Govt. Printing Press, Washington DC)

    Google Scholar 

  • Li H J, Farhat N H, Shen Y 1989 Radar cross section reduction by absorber covering.J. Electromagn. Waves Appl. 3: 219–235

    Google Scholar 

  • Lynnworth L C 1964 Audio frequency characterization of RAM.Proc. IEEE 52: 98–99

    Article  Google Scholar 

  • MacFarlane G G 1945 Radar camouflage research and development by the Germans. Tech. Rep. T1905 M/99 TRE

  • Macleod J B 1989Modeling of camouflage netting for radar cross section analysis. Master’s thesis (AFITGEENG89J2), School of Engineering Air Force Inst. of Technol., Wright-Patterson AFB OH

  • Maffioli F 1970 Constrained variable metric optimization of layered electromagnetic absorbers.Alta Freq. (Eng. Edn.) 39: 154–164

    Google Scholar 

  • Martin P W 1992 Development of F-117 stealth fighter.Lockheed Horizons 31: 18–23

    Google Scholar 

  • Marty V, Combes P-F, Borderies P 1992 Radar cross section of a rectangular waveguide array with complex load and covered with dielectric.La Rech. Aerosp. 4: 15–25

    Google Scholar 

  • McCauley J W, Halpin B M, Jr. Hynes T, Eitelman S D 1980 Radar absorptive ferrite/resin composites from industrial effluent.Ceramic Eng. Sci. Proc. 1: 356–369

    Google Scholar 

  • McCluggage W A 1987Study of radar cross section (RCS) characteristics and their application in future weapon systems. Master’s thesis (ETN8892081), RAF College, Cranwell

  • Mishra S R, Pavlasek J J F, Yazar M N 1982 Design criteria for costeffective broad band absorber-lined chambers for EMS measurements.IEEE Trans. Electromagn. Compat. EMC-24: 12–19

    Article  Google Scholar 

  • Mitsmakher M Iu 1980. Quality of modern anechoic chambers and radio wave absorbing materials.Antenny 28: 147–164

    Google Scholar 

  • Montgomery C G 1957Techniques of microwave measurements (New York: McGraw-Hill)

    Google Scholar 

  • Montgomery C G, Dicke R H, Purcell E 1948Principles of microwave circuits. Radiation Lab Series 8 (Boston, MA: Boston Technol.)

    Google Scholar 

  • Moreland J, Peters L Jr 1966 The specular radar cross section of absorber coated bodies.IEEE Trans. Antennas Propag. AP-14: 799–800

    Article  Google Scholar 

  • Musal H M, Hahn H T 1989 Thin layer electromagnetic absorber design.IEEE Trans. Magn. MAG-25: 3851–3853

    Article  Google Scholar 

  • Musal H M, Smith D C 1990 Universal design chart for specular absorbers.IEEE Trans. Magn. MAG-26: 1462–1464

    Article  Google Scholar 

  • Naamlooze Vennootschap Machinerieen 1936French Patent 802 728

  • Nagasubramanian G, Distefano S, Liang R H 1990 Silicon containing electroconductive polymers, structures made therefrom. Patent Application. Rep. PAT-APPL-7-479 485, (NASA, Pasadena CA)

    Google Scholar 

  • Nagornov A I, Postnikov A I, Vasil’ev V P, Gordeev V A 1978 Study of the absorption properties of resistive films aligned perpendicular to the waveguide axis.Radiofizika 21: 151–153

    Google Scholar 

  • Naito Y 1970 Generalised Snock’s limits in ferrite.Jpn. J. Phys.

  • Naito Y, Suetake K 1965 Construction of multilayer absorbing wall for microwaves.Electron. Commun. Jpn. 48(12): 112–121

    Google Scholar 

  • Naito Y, Suetake K 1971 Application of ferrite to Electromagnetic wave absorber and its characteristics.IEEE Trans. Microwave Theory Tech. MTT-19: 65–72

    Article  Google Scholar 

  • Olmedo L 1992 Absorbing materials based on conductive polymersChocs 6: 53–65

    Google Scholar 

  • Ono M, Suzuki M 1967 Reflection and attenuation characteristics of multilayer absorber at oblique incidence.Electron. Commun. Jpn. 50(9): 84–92

    Google Scholar 

  • Ono M, Okokawa S, Suzuki M 1967 Fundamental characteristics of the microwave absorber.Yamagata Univ. Bull. (Eng.) 9: 569–579

    Google Scholar 

  • Ono M, Ikuta A, Katagiri Y 1979 Synthesis of an electromagnetic wave absorber with good reflection characteristics at both normal and oblique incidence.Electron. Commun. Jpn. 62: 59–62

    Google Scholar 

  • Ono M, Yokoto T, Shibuya T 1983 A practical method of measuring the scattering characteristics of the pyramidal absorbers.Electron. Commun. Jpn. 66: 63–71

    Article  Google Scholar 

  • Perini J, Cohen L S 1991 Design of radar absorbing materials for wide range of angles of incidence.IEEE Int. Symp. on Electromagn. Compat. (New York: IEEE) pp 418–424

    Chapter  Google Scholar 

  • Post E J 1962 Formal structure of electromagnetics (Amsterdam: North Holland)

    MATH  Google Scholar 

  • Rogers S W 1986Radar cross section prediction for coated perfect conductors with arbitrary geometries. Master’s thesis (Rep. AFITCINR86105T), Air Force Inst. of Technol., Wright-Patterson AFB, OH

    Google Scholar 

  • Ruck G T, Barrick D E, Stuart W D, Krichbaum C K 1970Radar cross-section handbook (New York: Plenum) vol. 2

    Google Scholar 

  • Rudduck R C, Yu C L 1974 Circular waveguide method of measuring reflection properties of absorber panels.IEEE Trans. Antennas Propag. AP-22: 251–256

    Article  Google Scholar 

  • Salisbury W W 1952 Absorbent body for electromagnetic waves.US Patent 2599944

  • Schade H A 1945 Schornsteinfeger US tech. mission to Europe. Tech. Rep. 90-45 AD-47746

  • Schmitman C, Warwick G 1990 Building the B-2.Flight Int. 139: 24–27

    Google Scholar 

  • Severin A 1956 Nonreflecting absorbers for microwave radiation.IEEE Trans. Antennas Propag. AP-4: 385–392

    Article  Google Scholar 

  • Shi Z, Ding C, Jia Y 1993 Effects of absorbent materials on the RCS of a partially coated scatterer.Microwave Opt. Technol. Lett. 6: 109–111

    Article  Google Scholar 

  • Shimizu Y, Suetake K 1969 Minimum thickness design of broadband absorbing wall.Electron. Commun. Jpn. 52-B(4): 90–97

    Google Scholar 

  • Shneyderman Y A 1985 Radio-absorbing materials. Tech. Rep. NTIS Rep. ADA1574961XSP (Foreign Technol. Div.), Wright-Patterson AFB, OH

  • Stonier R A 1991 Stealth aircraft and technology from World War II to the Gulf.SAMPE J. 27(4): 9–17

    Google Scholar 

  • Strickel M A, Taflove A 1990 Time domain synthesis of broad band absorptive coatings for two dimensional conducting targets.IEEE Trans. Antennas Propag. AP-38: 1084–1091

    Article  Google Scholar 

  • Swarner W G, Peters L Jr 1963 Radar cross sections of dielectric or plasma coated conducting spheres and circular cylinders.IEEE Trans. Antennas Propag. AP-11: 558–569

    Article  Google Scholar 

  • Sweetman B 1982 The bomber that radar cannot see.New Sci. 93: 565–568

    Google Scholar 

  • Sweetman B 1987 Stealth in service.Interavia 42: 39–40

    Google Scholar 

  • Tretyakov S A, Oksanen M I 1991 Biisotropic layer as a polarization transformer. Tech. Rep., ISBN-951-22-0770-2, Electromagnetics Lab. Helsinki Univ. of Technology, Espoo, Finland

    Google Scholar 

  • Tsuji K 1992 Low observability aperture design for expendable countermeasures devices. Patent Rep., Patent-5 083 128, Dept. of the Navy, Washington, DC

    Google Scholar 

  • Veinger A I, Zabrodskii A G, Krasikov L A, Khorosheva N E 1990 Anomalous microwave absorption in magnetically filled low-molecular-weight rubbers.Am. Inst. Phys. 855–856

  • Vinoy K J, Jha R M 1994 Radar absorbing materials (RAM): a cross indexed bibliography (1956–1993). NAL Project Document PD AL 9404, National Aerospace Laboratories, Bangalore

  • Walkington J W, Huster L W 1979 Achieving effective radar cross section flight profiles on the B-1 aircraft. InSoc. Fli. Test Eng., Proc. 10th Annu. Symp. (Lancaster, CA: Soc. Flight Test Eng.)

    Google Scholar 

  • Weston V H 1963 Theory of absorbers in scattering.IEEE Trans. Antennas Propag. AP-11: 578–584

    Article  Google Scholar 

  • Wims P R, Palmer D D 1991 Nondestructive microwave scanning measurements for material property evaluation. Review of progress in quantitative nondestructive evaluation.Proc. 17th Annu. Rev. (New York: Plenum P.) A10: 551–558

    Google Scholar 

  • Yang C F, Burnside W D, Rudduck R C 1992 A periodic moment method solution for TM scattering from lossy dielectric bodies with application to wedge absorber.IEEE Trans. Antennas Propag. AP-40: 652–660

    Article  Google Scholar 

  • Yee K S 1966 Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media.IEEE Trans. Antennas Propag. AP-14: 302–307

    Google Scholar 

  • Yi P, Gan Y 1991 Investigation on microwave absorber with additive of metal coated carbon fiber.Acta Aeronąut. Astronąut. Sin. B12: 655–657

    Google Scholar 

  • Yokoi H, Fukumaro H 1971 Low-sidelobe paraboloidal antenna with microwave absorbers.Electron. Commun. Jpn. 54: 34–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vinoy, K.J., Jha, R.M. Trends in radar absorbing materials technology. Sadhana 20, 815–850 (1995). https://doi.org/10.1007/BF02744411

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744411

Keywords

  • Radar absorbing materials (RAM)
  • Radar cross section (RCS) reduction