Journal of Oceanography

, Volume 54, Issue 1, pp 19–28 | Cite as

Comparison of the effects of water-soluble (EDTA) and particulate (Chelex-100) synthetic ligands on the growth of phytoplankton population in the disphotic zone seawater

  • Takayoshi Toyota
  • Toshimitsu Nakashima


To clarify the beneficial roles of naturally occurring organic ligands on the growth of phytoplankton in newly upwelled water, phytoplankton culture experiments using disphotic zone water were conducted to discriminate between the effects of EDTA in the detoxification of certain toxic metal ions and increasing the availability of essential metals. Culture media were prepared by adding EDTA and Chelex-100, separately or in combination, to disphotic zone water samples. Our proposed working hypothesis is that phytoplankton growth can be enhanced by removing toxic metal ions from culture media by Chelex-100 and by detoxification of toxic metal ions or increasing the availability of essential metals by EDTA. A shortening of the lag period and an increase of the specific population growth rate were clearly observed after the addition of Chelex-100; nd EDTA. The effects of EDTA were more considerable than those of Chelex-100; a 17 to 44% in shortening the lag period and a 35 to 56% increase in the growth rate, when comparing the effects of Chelex-100 with those of EDTA. The similar effects of removing toxic metal ion by Chelex-100 as those of detoxification by EDTA suggested that EDTA has a role not only of detoxification but also of increasing the availability of essential metals. The present study suggests that the low productivity in newly upwelled water observed by Barber and Ryther (1969) can be ascribed to both toxic metal ions and a lack of available forms of essential metals because of their low contents of free natural organic ligands.

Key words

Ligand upwelling primary production EDTA Chelex-100 deep seawater phytoplankton growth metal lag period growth rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, R. T. and F. P. Chavez (1991): Regulation of primary productivity rate in the equatorial Pacific.Limnol. Oceanogr.,36, 1803–1815.Google Scholar
  2. Barber, R. T. and J. H. Ryther (1969): Organic chelators: Factors affecting primary production in the Cromwell Current upwelling.J. Exp. Mar. Biol. Ecol. 3, 191–199.CrossRefGoogle Scholar
  3. Barber, R. T., R. C. Dugdale, J. J. MacIssac and R. L. Smith (1971): Variations in phytoplankton growth associated with the source and conditioning of upwelling water.Inv. Pesq.,35, 171–193.Google Scholar
  4. Brand, L. E., W. G. Sunda and R. R. L. Guillard (1983): Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron.Limnol. Oceanogr.,28, 1182–1198.Google Scholar
  5. Coale, K. H. and K. W. Bruland (1988): Copper complexation in the Northeast Pacific.Limnol. Oceanogr.,33, 1084–1104.Google Scholar
  6. Coale, K. H. and K. W. Bruland (1990): Spacial and temporal variability in copper complexation in the North Pacific.Deep-Sea Res.,37, 317–336.CrossRefGoogle Scholar
  7. Davey, E. W., J. H. Gentile, S. J. Erickson and P. Betzer (1970): Removal of trace metals from marine culture media.Limnol. Oceanogr.,15, 486–488.Google Scholar
  8. Davey, E. W., M. J. Morgan and S. J. Erickson (1973): A biological measurement of the copper complexation capacity of seawater.Limnol. Oceanogr.,18, 993–997.Google Scholar
  9. Eppley, R. W., J. N. Rogers and J. J. McCarthy (1969): Halfsaturation constant for uptake of nitrate and ammonium by marine phytoplankton.Limnol. Oceanogr.,14, 912–920.CrossRefGoogle Scholar
  10. Hargraves, P. E. and F. W. French (1983): Diatom resting spores: Significance and strategies. p. 49–68. InSurvival Strategies of the Algae, ed. by G. A. Fryxell, Cambridge Univ. Press, Cambridge.Google Scholar
  11. Harrison, G. I. and F. M. M. Morel (1986): Response of the marine diatom Thalassiosira weissflogii to iron stress.Limnol. Oceanogr.,31, 989–997.Google Scholar
  12. Jackson, G. A. and J. J. Morgan (1978): Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations.Limnol. Oceanogr.,23, 268–282.Google Scholar
  13. Kawabuchi, K., M. Kanke, T. Muraoka and M. Yamauchi (1976): Ion-exchange concentration on a chelating resin and atomic absorption spectrophotometric determination of heavy metals in geochemical samples.Bunseki Kagaku,25, 213–218 (in Japanese)Google Scholar
  14. Kuma, K. and K. Matsunaga (1995): Availability of colloidal ferric oxides to coastal marine phytoplankton.Mar. Biol.,122, 1–11.CrossRefGoogle Scholar
  15. Martin, J. H., R. M. Gordon and S. E. Fitzwater (1991): The case for iron.Limnol. Oceanogr.,36, 1793–1802.Google Scholar
  16. Menzel, D. W. and R. F. Vaccaro (1964): The measurement of dissolved organic and particulate carbon in seawater.Limnol. Oceanogr.,9, 138–142.Google Scholar
  17. Midorikawa, T. and E. Tanoue (1996): Effects of ligand speciation on determinations of the complexing abilities of strong ligands in natural waters.J. Oceanogr.,52, 421–439.CrossRefGoogle Scholar
  18. Morel, F. M. M., R. J. M. Hudson and N. M. Price (1991): Limitation of productivity by trace metals in the sea.Limnol. Oceanogr.,36, 1742–1755.Google Scholar
  19. Murphy, T. P. and D. R. S. Lean (1976): Blue-green algae: their excretion of iron-selective chelators enable them to dominate other algae.Science,192, 900–902.CrossRefGoogle Scholar
  20. Nakashima, T. (1988): Effects of deep sea water on the growth of a marine diatom speciesSkeletonema costatum.Bull. Plankton Soc. Japan,35, 45–55.Google Scholar
  21. Nakashima, T. (1992): Factors liberating growth lag of a diatom,Skeletonema costatum in deep sea water I. Liberation by adding various organic matter.Bull. Plankton Soc. Japan,38, 93–104.Google Scholar
  22. Paasche, E. (1973): Silicon and ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species.Mar. Biol.,19, 262–269.CrossRefGoogle Scholar
  23. Perry, M. J. (1976): Phosphate utilization by oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific.Limnol. Oceanogr.,21, 88–107.Google Scholar
  24. Price, N. M., G. I. Harrison, J. G. Hering, R. J. Hudson, P. M. V. Nirel, B. Palenik and F. M. M. Morel (1988/1989): Preparation and chemistry of the artificial algal culture medium Aquil.Biol. Oceanogr.,6, 443–461.Google Scholar
  25. Riley, J. P. and D. Taylor (1968): Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry.Anal. Chim. Acta,40, 479–485.CrossRefGoogle Scholar
  26. Robinson, R. J. and T. G. Thompson (1948): The determination of silicate in sea water.J. Mar. Res.,7, 49–55.Google Scholar
  27. Ryther, H. J. (1969): Photosynthesis and fish production in the sea.Science,166, 72–76.CrossRefGoogle Scholar
  28. Steemann Nielsen, E. and S. Wium-Andersen (1970): Copper ions as poison in the sea and in freshwater.Mar. Biol.,6, 93–97.CrossRefGoogle Scholar
  29. Strickland, J. D. H. and T. R. Parsons (1972): A practical handbook of seawater analysis.Bulletin, 167, 2nd ed., Fish. Res. Bd. Can., Ottawa, 310 pp.Google Scholar
  30. Sunda, W. G. (1988/1989): Trace metal interactions with marine phytoplankton.Biol. Oceanogr.,6, 411–442.Google Scholar
  31. Sunda, W. G. and R. R. L. Guillard (1976): The relationship between cupric ion activity and the toxicity of copper to phytoplankton.J. Mar. Res.,34, 511–529.Google Scholar
  32. Sunda, W. G., R. T. Barber and S. A. Huntsman (1981): Phytoplankton growth in nutrient rich seawater: importance of copper-manganese cellular interactions.J. Mar. Res.,39, 567–586.Google Scholar
  33. Tanoue, E. and T. Midorikawa (1995): Detection, characterization and dynamics of dissolved organic ligands in oceanic waters. p. 201–224. InBiogeochemical Processes and Ocean Flueces in the Western Pacific, ed. by H. Sakai and Y. Nozaki, TERRAPUB, Tokyo.Google Scholar
  34. Toyota, T. (1994): Growth inhibition of phytoplankton populations cultured in disphotic zone water by insufficient amounts of dissolved organic carbon.J. Oceanogr.,50, 499–514.CrossRefGoogle Scholar
  35. Trick, C. G., R. J. Andersen, A. Gillam and P. L. Harrison (1983): Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Prorocentrum Minumum.Science,219, 306–308.CrossRefGoogle Scholar
  36. Wells, M. L., N. M. Price and K. W. Bruland (1994): Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters.Limnol. Oceanogr. 39, 1481–1486.CrossRefGoogle Scholar
  37. Wilhelm, S. W. and C. G. Trick (1994): Iron-limited growth of cyanobacteria: multiple siderophore production is a common response.Limnol. Oceanogr.,39, 1979–1984.Google Scholar

Copyright information

© The Oceanographic Society of Japan 1998

Authors and Affiliations

  • Takayoshi Toyota
    • 1
  • Toshimitsu Nakashima
    • 1
  1. 1.Japan Marine Science and Technology CenterYokosukaJapan

Personalised recommendations