Skip to main content

Advertisement

Log in

Combined effects of photosynthesis and calcification on the partial pressure of carbon dioxide in seawater

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The effects of marine photosynthesis and calcification on the partial pressure of carbon dioxide in seawater (P CO 2) are examined in the light of recent studies and using original model calculations. The ratio of organic carbon to inorganic carbon production (R OI) determines whether an ecosystem is a net sink or source for atmospheric CO2. TheP CO 2 maintains its initial value when the photosynthetic rate is approximately 0.6 times the calcification rate under normal sea surface condition. In case of higherR OI, theP CO 2 decreases and seawater can absorb atmospheric CO2. The ratio of organic carbon to inorganic carbon production can be used as a potential indicator of sink-source behavior in aquatic photo-calcifying systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, D. J. and B. E. Chalker (1990): Calcification and photosynthesis in reef-building corals and algae. p. 109–131. InCoral Reefs, Ecosystem of the World 25, ed. by Z. Dubinsky, Elsevier, Amsterdam.

    Google Scholar 

  • Berger, W. H. (1982a). Deglacial CO2 buildup: constraints on the coral-reef model.Paleogeogr. Paleoclimatol. Paleoecol.,40, 235–253.

    Article  Google Scholar 

  • Berger, W. H. (1982b): Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis.Naturwissenschaften,69, 87–88.

    Article  Google Scholar 

  • Bolin, B. (1960): On the exchange of carbon dioxide between the atmosphere and the sea.Tellus,12, 274–281.

    Google Scholar 

  • Broecker, W. S. and T.-H. Peng (1974): Gas exchange rates between air and sea.Tellus,26, 21–35.

    Google Scholar 

  • Chisholm, R. M. and J.-P. Gattuso (1991): Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities.Limnol. Oceanogr.,36, 1232–1239.

    Google Scholar 

  • Deffeyes, K. S. (1965): Carbonate equilibria: a graphic and algebraic approach.Limnol. Oceanogr. 10, 412–426.

    Google Scholar 

  • Frankignoulle, M. and J.-P. Gattuso (1993): Air-sea CO2 exchanges in coastal ecosystems. p. 233–248. InInteractions of the Carbon, Nitrogen, Phosphorus and Sulfur Biogeochemical Cycles and Global Change, NATO ASI Series Vol. 5, ed. by R. Wollast, F. T. Mackenzie and L. Chou, Springer-Verlag, Berlin.

    Google Scholar 

  • Frankignoulle, M., C. Canon and J.-P. Gattuso (1994): Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2.Limnol. Oceanogr.,39, 158–462.

    Article  Google Scholar 

  • Frankignoulle, M., M. Pichion and J.-P. Gattuso (1995): Aquatic calcification as a source of carbon dioxide. p. 265–271. InCarbon Sequestration in the Biosphere, NATO ASI Series, Vol. 33, ed. by M. A. Beran, Springer-Verlag, Berlin.

    Google Scholar 

  • Gattuso, J.-P., M. Pichon, B. Delesalle and M. Frankignoulle (1993): Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem, (Moorea, French Polynesia).Mar. Ecol. Prog. Ser.,96, 259–267.

    Article  Google Scholar 

  • Kano, Y. (1990): Relation between increase of coral and atmospheric carbon dioxide concentration.Umi to Sora,65, 259–265 (in Japanese).

    Google Scholar 

  • Kayanne, H., A. Suzuki and H. Saito (1995): Diurnal changes in the partial pressure of carbon dioxide coral reef water.Science,269, 214–216.

    Article  Google Scholar 

  • Kinsey, D. W. (1985): Metabolism, calcification and carbon production. I Systems level studies.Proc. 5th Int. Coral Reef Congr.,4, 505–526.

    Google Scholar 

  • Marsh, J. A., Jr. and S. V. Smith (1978): Productivity measurements of coral reefs in flowing water. p. 361–377. InCoral Reefs: Research Methods, ed. by D. R. Stoddart and R. E. Johannes, Unesco, Paris.

    Google Scholar 

  • McConnaughey, T. (1991): Calcification inChara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation.Limnol. Oceanogr.,36, 619–628.

    Google Scholar 

  • McConnaughey, T. (1994): Calcification, photosynthesis, and global carbon cycles.Bull. de l’Institut Océnographique Monaco, no spécial13, 137–161.

    Google Scholar 

  • McConnaughey, T. A. and R. H. Falk (1991): Calcium-proton exchange during algal calcification.Biol. Bull.,180, 185–195.

    Article  Google Scholar 

  • Millero, F. J. (1979): The thermodynamics of the carbonate system in seawater.Geochim. Cosmochim. Acta,43, 1651–1661.

    Article  Google Scholar 

  • Opdyke, B. N. and J. C. G. Walker (1992): Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2.Geology,20, 733–736.

    Article  Google Scholar 

  • Park, P. K. (1969): Oceanic CO2 systems: an evaluation of 10 methods of investigation.Limnol. Oceanogr.,14, 179–186.

    Article  Google Scholar 

  • Peng, T.-H., T. Takahashi, W. S. Broecker and J. Oladsson (1987): Seasonal variability of carbon dioxide, nutrients and oxygen in the northern Atlantic surface water: observations and a model.Tellus,89B, 439–458.

    Google Scholar 

  • Skirrow, G. (1965): The dissolved gases—Carbon dioxide. p. 227–322. InChemical Oceanography, Vol. 1, ed. by, J. P. Riley and G. Skirrow, Academic Press, New York.

    Google Scholar 

  • Smith, S. V. and G. S. Key (1975). Carbon dioxide and metabolism in marine environments.Limnol. Oceanogr.,20, 439–459.

    Google Scholar 

  • Stumm, W. and J. J. Morgan (1981):Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. John Wiley & Sons, New York, 780 pp.

    Google Scholar 

  • Suzuki, A. (1994): Seawater CO2 system and its transformation caused by photosynthesis and calcification in coral reefs—theory and measurements of the reef metabolism.Bull. Geol. Surv. Japan,45, 573–623 (in Japanese with English abstract).

    Google Scholar 

  • Suzuki, A., T. Nakamori and H. Kayanne (1995): The mechanism of production enhancement in coral reef carbonate system: model and empirical results.Sediment. Geol.,99, 259–280.

    Article  Google Scholar 

  • Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman and S. C. Sutherland (1993): Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study.Global Biogeochem. Cycles,7, 843–878.

    Article  Google Scholar 

  • Ware, J. R., S. V. Smith and M. L. Reaka-Kudla (1992): Coral reefs: sources or sinks of atmospheric CO2.Coral Reefs,11, 127–130.

    Article  Google Scholar 

  • Weiss, R. F. (1974): Carbon dioxide in water and seawater: The solubility of a non-ideal gas,Mar. Chem.,2, 203–215.

    Article  Google Scholar 

  • Weiss, R. F., R. A. Jahnke and C. D. Keeling (1982): Seasonal effects of temperature and salinity on the partial pressure of CO2 in seawater.Nature,300, 511–513.

    Article  Google Scholar 

  • Zimmerman, R. C., D. L. Steller, J. A. Coyer and, R. S. Alberte (1996): Photosynthesis and calcification by coral reef autotrophs: Impact on air/sea flux of CO2. p. 216, InAbstracts, 8th Int. Coral Reef Symp., Panama.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A. Combined effects of photosynthesis and calcification on the partial pressure of carbon dioxide in seawater. J Oceanogr 54, 1–7 (1998). https://doi.org/10.1007/BF02744376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744376

Keywords

Navigation