Bulletin of Materials Science

, Volume 6, Issue 1, pp 39–45 | Cite as

Curie temperatures and 0°K magnetic moments of zinc-substituted lithium ferrites

  • Pran Kishan
  • D R Sagar
  • S N Chatterjee
  • L K Nagpaul
  • K K Laroia
Article

Abstract

Because of their several attractive features including relatively high Curie temperatures, substituted lithium ferrites have become important for applications at microwave frequencies. Néel collinear arrangement of spins onA andB sublattices is unable to satisfactorily explain the 0°K saturation moments and the observed Curie temperatures of the zinc-substituted lithium ferrites, especially at concentrations of zincz>0·3 in the formula Li0·5−z/2ZnzFe2·5−z/2O4. Rosencaig’s localized canting model has been extended and used to compute 0°K magnetic moments and Curie temperatures of these ferrites with substitution levels up toz=0·7. Reasonably good agreement between the calculated and experimental values, both for the 0°K magnetic moments and the Curie temperatures, has been obtained using exchange parameters ratios based on the valuesJ aa=−20°K,J bb=−8°K andJ ab=J ba=−29°K.

Keywords

Ferrites Curie temperature magnetisation localised spin canting exchange parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dionne G F 1976J. Appl. Phys. 47 4220CrossRefGoogle Scholar
  2. Dorman J L, Merceron T and Nogues M 1981Applied Mössbauer effect, Proc. Int. Conf., JaipurGoogle Scholar
  3. Feldmann P, Simonet W, Desvignes J M and Le Gall H 1979 Joint Intermag 3M Conf. (New York), Abst. 7P-10 (Unpublished work)Google Scholar
  4. Geller S, Williams H J, Spinola G P and Sherwood R C 1964Bell. Sys. Tech. J. 43 565Google Scholar
  5. Gorter E W 1954Phillips. Res. Rep. 9 295Google Scholar
  6. Néel L 1948Ann. Phys. (Paris) 3 137Google Scholar
  7. Nogues M, Dorman J L, Perrin M, Simonet W and Gibert P 1979IEEE Trans. MAG-15 1729Google Scholar
  8. Nowik I 1968J. Appl. Phys. 40 5184CrossRefGoogle Scholar
  9. Patton C E, Edmondson C A and Liu Y H 1982J. Appl. Phys. 53 2431CrossRefGoogle Scholar
  10. Pran Kishan, Chatterjee S N, Nagpaul L K and Laroia K K 1981Indian J. Pure Appl. Phys. 19 83Google Scholar
  11. Rado G T and Follen V J 1960J. Appl. Phys. 31 62CrossRefGoogle Scholar
  12. Rosencwaig A 1970Can. J. Phys. 48 2857, 2868Google Scholar
  13. Simonet W and Hermosin A 1978IEEE Trans. MAG-14 903Google Scholar
  14. Srivastava C M, Srinivasan G and Nanadikar N G 1979Phys. Rev. B19 499Google Scholar
  15. White G O, Edmondson C A, Goldfarb R B and Patton C E 1978J. Appl. Phys. 50 2381CrossRefGoogle Scholar
  16. Yafet Y and Kittel C 1952Phys. Rev. 87 290CrossRefGoogle Scholar
  17. Zhilyakov S M, Ivolga V V, Mel’ tsev V I and Naiden E P 1977Sov. Phys. Sol. State 19 1817Google Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • Pran Kishan
    • 1
  • D R Sagar
    • 1
  • S N Chatterjee
    • 1
  • L K Nagpaul
    • 1
  • K K Laroia
    • 1
  1. 1.Solid State Physics LaboratoryDelhiIndia

Personalised recommendations