Skip to main content
Log in

Adaptive finite element analysis with quadrilateral elements using a newh-refinement strategy

  • Special Issue On Computational Structural Mechanics
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

The theory and mathematical bases ofa-posteriori error estimates are explained. It is shown that theMedial Axis of a body can be used to decompose it into a set of mutually non-overlapping quadrilateral and triangular primitives. A mesh generation scheme used to generate quadrilaterals inside these primitives is also presented together with its relevant implementation aspects. A newh-refinement strategy based on weighted average energy norm and enhanced by strain energy density ratios is proposed and two typical problems are solved to demonstrate its efficiency over the conventional refinement strategy in the relative improvement of global asymptotic convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babuska I, Szabo B 1982 On the rates of convergence of the finite element method.Int. J. Numer. Methods Eng. 20: 323–341

    Article  MathSciNet  Google Scholar 

  • Blacker T, Belytschko T 1994 Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements.Int. J. Numer. Methods Eng. 37: 517–536

    Article  MATH  MathSciNet  Google Scholar 

  • Blacker T, Stevenson M 1991 Paving: a new approach to automated quadrilateral mesh generation.Int. J. Numer. Methods Eng. 32: 811–847

    Article  MATH  Google Scholar 

  • Blum H 1967 A transformation for extracting new descriptors of shape.Models for the perception of speech and visual form (ed.) W Wathen-Dunn (Cambridge, MA: MIT Press)

    Google Scholar 

  • Blum H 1973 Biological shape and visual science.J. Theor. Biol. 38: 205–287

    Article  MathSciNet  Google Scholar 

  • Blum H, Nagel R 1973 Shape description using weighted symmetric axis features.Pattern Recogn. 10: 167–180

    Article  Google Scholar 

  • Bookstein F L 1979 The line skeleton.Comput. Graphics Image Process. 11: 123–137

    Article  Google Scholar 

  • Botkin M A, Bennet J A 1986 The application of adaptive mesh refinement to shape optimization of plate structures.Accuracy estimates and adaptive refinements in finite element computations (eds) I Babuska, J P Gago, O C Zienkiewicz, D W Kelly (New York; John Wiley) pp 227–246

    Google Scholar 

  • Buell W R, Bush B A 1973 Mesh generation — a survey.J. Eng. Ind., ASME 7: 332–338

    Google Scholar 

  • Bugeda G, Oliver J 1991 Automatic adaptive remeshing for structural shape optimization.European Conf. on New Advances in Computat. Struct. Mech. Giens, France

  • Calabi L, Hartnett W E 1968a A theorem for closed non convex sets.Proc. Am. Math. Soc. 19: 1495–1498

    Article  MATH  MathSciNet  Google Scholar 

  • Calabi L, Hartnett W E 1968b Shape recognition, prairie fires, convex deficiencies and skeletons.Am. Math. Mon. 75: 335–338

    Article  MATH  MathSciNet  Google Scholar 

  • Cantin G, Touzot G, Loubignac G 1978 An iterative algorithm to build continuous stress and displacement relations.Int. J. Numer. Methods Eng. 12: 1453–1506

    Article  Google Scholar 

  • Cedillo H E F, Bhatti M A 1988 A simple strain energy based finite element mesh refinement scheme.Comput. Struct. 28: 523–533

    Article  MATH  Google Scholar 

  • Cook R D 1982 Loubignac’s iterative method in finite element elastostatics.Int. J. Numer. Methods Eng. 18: 67–75

    Article  MATH  Google Scholar 

  • Gago J P de S R, Kelly D W, Zienkiewicz O C, Babuska I 1983 A-posteriori error analysis and adaptive processes in the finite element method: Part II — adaptive mesh refinement.Int. J. Numer. Methods Eng. 19: 1621–1656

    Article  MATH  MathSciNet  Google Scholar 

  • Grosse I R, Katragadda P, Benoit J 1992 An adaptive accuracy-baseda posteriori error estimator.Finite Elements Anal. Design 12: 75–90

    Article  MATH  Google Scholar 

  • Gursoy H N, Patrikalakis N M 1992 An automatic coarse and fine surface mesh generation scheme based on medial axis transform: Part 1. Algorithms.Eng. Comput. 8: 121–137

    Article  Google Scholar 

  • Heighway E A 1983 A mesh generator for automatically subdividing irregular polygons into quadrilaterals.IEEE Trans. Magnetics 19: 2535–2538

    Article  Google Scholar 

  • Ho-Le K 1988 Finite element mesh generation methods: A review and classification.Comput. Aided Design. 20: 27–38

    Article  MATH  Google Scholar 

  • Kelly D W 1984 The self equilibration of residuals and complimentary a-posteriori error estimates in FEM.Int. J. Numer. Methods Eng. 20: 1491–1506

    Article  MATH  Google Scholar 

  • Kelly D W, Isles J D 1989 A procedure for a-posteriori error analysis for the FEM which contains a bounding measure.Int. J. Numer. Methods Eng. 31: 63–71

    Google Scholar 

  • Kelly D W, Gago J P de S R, Zienkiewicz O C, Babuska I 1983 A-posteriori error analysis and adaptive processes in the finite element method: Part I — error analysis.Int. J. Numer. Methods Eng. 19: 1593–1619

    Article  MATH  MathSciNet  Google Scholar 

  • Krishnamoorthy C S, Raphael B, Mukherjee S 1995 Meshing by successive superelement decomposition (MSD) — A new approach to quadrilateral mesh generation.Finite Elements Anal. Design 20: 1–37

    Article  MATH  Google Scholar 

  • Lee C K, Lo S H 1992 An automatic adaptive refinement finite element procedure for 2D elastostatic analysis.Int. J. Numer. Methods Eng. 35: 1967–1989

    Article  MATH  MathSciNet  Google Scholar 

  • Lee D T 1982 Medial axis transformations of a planar shape.IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4: 363–369

    Article  Google Scholar 

  • Melosh R J, Marcal P V 1977 An energy basis for mesh refinement of structural continua.Int. J. Numer. Methods Eng. 11: 1083–1091

    Article  MATH  Google Scholar 

  • Montanari U 1968 A method for obtaining skeleton using a quasi-Euclidian distance.J. Assoc. Comput. Mach. 15: 600–624

    Google Scholar 

  • Mukherjee S, Krishnamoorthy C S 1996a Adaptive analysis of plates by shear flexible quad4 R-M elements.Finite Elements Anal. Design 22: 329–366

    Article  MATH  Google Scholar 

  • Mukherjee S, Krishnamoorthy C S 1996b Element patch based enhanced superconvergent stress projection and adaptive finite element analysis.Int. J. Numer. Methods Eng. (communicated)

  • Nagel R N, Blum H 1976 A symmetric axis basis for object recognition and description.Proc. IEEE meeting on Decision and Control 168–170

  • Patrikalakis N M, Gursoy H N 1990 Shape interrogation by medial axis transform. Design Lab Memo, 90-2, Sea Grant College Program, MIT

  • Reddy J M, Turkiyyah G 1995 Computation of 3D skeletons using a generalized Delaunay triangulation technique.Comput. Aided Design 27: 677–694

    Article  MATH  Google Scholar 

  • Talbert J A, Parkinson AR 1990 Development of an automatic finite element two dimensional mesh generator using quadrilateral elements and Bezier curve boundary definition.Int. J. Numer. Methods Eng. 29: 1551–1567

    Article  Google Scholar 

  • Tam T K H, Armstrong C G 1991 2D finite element mesh generation by medial axis subdivision.Adv. Eng. Software 13: 313–324

    Article  MATH  Google Scholar 

  • Thacker W C 1980 A brief review of techniques for generating irregular computational grids.Int. J. Numer. Methods Eng. 15: 1335–1342

    Article  MATH  Google Scholar 

  • Turkiyyah G, Fenves S J 1988 Generation and interpretation of finite element models in a knowledge based environment. R-90-188, Department of Civil Engineering, Carnegie-Mellon University

  • Wiberg N-E, Abdulwahab F 1993 Patch recovery based on superconvergent derivatives and equilibrium.Int. J. Numer. Methods Eng. 36: 2703–2724

    Article  MATH  MathSciNet  Google Scholar 

  • Wiberg N-E, Li X D 1994 Superconvergent patch recovery of finite element solution and an a-posteroriL 2 norm error estimate.Commun. Numer. Methods Eng. 10: 313–320

    Article  MATH  MathSciNet  Google Scholar 

  • Wiberg N-E, Abdulwahab F, Ziukas S 1994 Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions.Int. J. Numer. Methods Eng. 37: 3417–3440

    Article  MATH  MathSciNet  Google Scholar 

  • Wiberg N-E, Abdulwahab F, Ziukas S 1995 Improved element stress for node and element patches using superconvergent patch recovery.Commun. Numer. Methods Eng. 11: 619–627

    Article  MATH  Google Scholar 

  • Zhu J Z, Zienkiewicz O C, Hinton E, Wu J 1991 A new approach to the development of automatic quadrilateral mesh generation.Int. J. Numer. Methods Eng. 32: 849–866

    Article  MATH  Google Scholar 

  • Zienkiewicz O C, Zhu J Z 1987 A simple error estimator and adaptive procedure for practical engineering analysis.Int. J. Numer. Methods Eng. 24: 337–357

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz O C, Zhu J Z 1992a The superconvergent patch recovery and a-posteriori error estimates. Part 1: The recovery technique.Int. J. Numer. Methods Eng. 33: 1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz O C, Zhu J Z 1992b The superconvergent patch recovery and a-posteriori error estimates. Part 2: Error estimates and adaptivity.Int. J. Numer. Methods Eng. 33: 1365–1382

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Krishnamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, C.S., Mukherjee, S. Adaptive finite element analysis with quadrilateral elements using a newh-refinement strategy. Sadhana 21, 623–652 (1996). https://doi.org/10.1007/BF02744106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744106

Keywords

Navigation