Skip to main content
Log in

Repeated yield drop phenomena as a cooperative effect

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We present a theoretical model of repeated yielding (ry) which reproduces many experimentally observed features, apart from showing how the temporal behaviour of the phenomenon emerges as a consequence of the cooperative behaviour of defects. We first consider the case of step-like creep curves. Our model leads to a coupled set of nonlinear differential equations which admit limit cycle solutions, and thence jumps on the creep curve. Approximate closed form solutions for the limit cycles and the steps on the creep curve are obtained. The model is then extended to the constant strain rate experiment by including the machine equation. The temporal ordering ofry is shown to follow, as well as several other features characteristic ofry. Chaotic flow is also exhibited: the model has a sequence of period-doubling bifurcations with an exponent equal to that of the quadratic map. Finally, we have analysed the fluctuations during the onset ofry using nonlinear Langevin equations. Fluctuations in the periodic (ry) phase are also investigated. We conclude thatry is another example of a dissipative structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananthakrishna, G. Repeated yield drop phenomena as a cooperative effect. Bull. Mater. Sci. 6, 665–676 (1984). https://doi.org/10.1007/BF02743994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02743994

Keywords

Navigation