Skip to main content
Log in

Inverse bestrahlungsplanung

Inverse radiotherapy planning

  • Aktuelles Forum
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Hintergrund

In der klinischen Praxis gibt es immer wieder Fälle, bei denen mit konventionellen Methoden keine zufriedenstellende Dosisverteilung erzielt werden kann. Für diese Fälle können die inverse Bestrahlungsplanung und eine Strahlentherapie mit intensitätsmodulierten Feldern möglicherweise eine Lösung bieten.

Methode

Bei der inversen Bestrahlungsplanung wird mit Hilfe eines Computeralgorithmus automatisch ein Bestrahlungsplan erzeugt, der den Vorgaben des Arztes entspricht. Die Vorgaben können entweder dosisabhängig sein, wie zum Beispiel Minimal- und Maximaldosen in Zielvolumina und Risikoorganen, oder sie können auf medizinisch-biologischen Modellen basieren, wie der komplikationsfreien Tumorheilung. Als Resultat der inversen Planung erhält man nach Vorgabe der Anzahl und Einstrahlrichtung die Fluenzverteilung der entsprechenden Strahlenfelder. Diese Fluenzverteilungen können mit Kompensatoren bzw. Multi-Leaf-Kollimatoren erzeugt werden.

Ergebnisse

Erste klinische Studien mit optimierten intensitätsmodulierten Bestrahlungstechniken werden bereits durchgeführt. Es hat sich gezeigt, daß die Technologie beherrschbar ist und die erreichbaren Dosisverteilungen in bezug auf Tumorkonformität denen konventioneller Methoden überlegen sind.

Schlußfolgerung

Die inverse Bestrahlungsplanung mit intensitätsmodulierten Feldern wird bei weiterer Verbesserung der Technologie sicher bei ausgewählten klinischen Fällen mehr und mehr eingesetzt werden.

Abstract

Background

In clinical practice it sometimes happens that with currently available conformai radiotherapy techniques no satisfactory dose distribution can be achieved. In these cases inverse radiotherapy planning and intensity modulated radiotherapy may give better solutions.

Method

Inverse planning is a technique using a computer program to automatically achieve a treatment plan which has an optimal merit. This merit may either depend on dose or dose-volume constraints like minimum and maximum doses in the target region or critical organs, respectively, or biological indices like the complication free tumor control rate. As the result of inverse planning the inhomogeneous intensity fluence of the beams is calculated. These fluence distributions may be generated by beam compensators or multi-leaf collimation.

Results

Clinical studies to prove the advantage of inverse planning are already on the way. It has been shown that this technology is safe and that the dose distributions which can be achieved are superior to conventional methods.

Conclusions

Inverse treatment planning and intensity modulated radiation therapy will almost certainly come to be the technique of choice for selected clinical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bortfeld T, Boyer AL, Schlegel W, et al. Realization and verification of three-dimensional conformai radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys 1994;30: 899–908.

    PubMed  CAS  Google Scholar 

  2. Bortfeld T, Stein J, Schlegel W. Inverse Planung und Bestrahlungstechniken mit intensitätsmodulierten Feldern. In: Richter J, Flentje M, Hrsg. Strahlenphysik für die Radio-Onkologie. Stuttgart-New York: Thieme, 1998:121–129.

    Google Scholar 

  3. Bortfeld T, Bürkelbach J, Boeseke R, et al. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol 1990;35:1423–1434.

    Article  PubMed  CAS  Google Scholar 

  4. Bortfeld T, Btlrkelbach J, Boeseke R, et al. Three-dimensional solution of the inverse problem in conformation radiotherapy. In: Breit A, ed. Advanced radiation therapy: Tumor response monitoring and treatment planning. Berlin-Heidelberg: Springer, 1992:503–508.

    Google Scholar 

  5. Bortfeld T. Dosiskonformation in der Tumortherapie mit externer ionisierender Strahlung: Physikalische Möglichkeiten und Grenzen. Heidelberg: Habil.-Schrift, 1995.

    Google Scholar 

  6. Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 1988;12:129–140.

    Article  PubMed  CAS  Google Scholar 

  7. Busch M. Analytic optimization method for afterloading techniques. In: Proc. 8th Int. Conf. on the Use of Computers in Radiation Therapy. Toronto: Silver Spring, MD, USA, IEEE Computer Society Press 1984: 399–400.

    Google Scholar 

  8. Carol MP, Grant W, Bleier AR, et al. The field matching problem as it applies to the Peacock three-dimensional conformai system for intensity modulation. Int J Radiat Oncol Biol Phys 1996;34:183–187.

    Article  PubMed  CAS  Google Scholar 

  9. Carol MP, Targovnik H, Campbell C, et al. An automatic 3D treatment planning and implementation system for optimized conformai therapy. In: Minet P, ed. Three-dimensional treatment planning. Proc. EAR Conf. Geneva: WHO, 1992:173–187.

    Google Scholar 

  10. Carol MP. Integrated 3-D conformai multi-vane intensity modulation delivery system for radiotherapy. In: Hounsell AR, Wilkinson JM, Williams PC, eds. Proc. of the XIth Int. Conf. on the Use of Computers in Radiation Therapy. Manchester, UK: Manchester. North Western Medical Physics Department, Christie Hospital NHS Trust, 1994:172–173.

    Google Scholar 

  11. De Jaeger K, Van Duyse B, De Wagter C, et al. Radiotherapy to targets with concave surfaces: Planning and clinical execution by intensity modulation using a static segm, entation technique. Proc. ESTRO Conf., Gardone Riviera, 1995. Radiother Oncol 1995; 37: Suppl 1:61.

    Google Scholar 

  12. Ellis F, Hall EJ, Oliver R. A compensator for variation in tissue thickness for high energy beam. Br J Radiol 1959;32:421–424.

    PubMed  CAS  Google Scholar 

  13. Ellis F, Lescrenier C. Combined compensation for contours and heterogeneity. Radiology 1973;106:191–195.

    PubMed  CAS  Google Scholar 

  14. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic iradiation. Int J Radiat Oncol Biol Phys 1991;21:109–122.

    PubMed  CAS  Google Scholar 

  15. Esik O, Bortfeld T, Bendl R, et al. Inverse radiotherapy planning for a concave-convex PTV in cervical and upper mediastinal regions. Simulation of radiotherapy using an Alderson-RANDO phantom. Strahlenther Onkol 1997;173:193–200.

    Article  PubMed  CAS  Google Scholar 

  16. Fraass BA, Marsh L, Martel MK, et al. Multileaf colimator based intensity modulation for conformai treatment of prostate cancer. Med Phys 1994;21:1008.

    Google Scholar 

  17. Grosu A, Feldmann HJ, Albrecht C, et al. Dreidimensionale Bestrahlungsplanung bei Hirntumoren: Vorteile der Methode und klinische Ergebnisse. Strahlenther Onkol 1998;174:7–13.

    PubMed  CAS  Google Scholar 

  18. Gustafsson A, Lind BK, Svensson R, et al. Simultaneous optimization of dynamic multileaf collimation and scanning patterns or compensation filters using a generalized pencil beam algorithm. Med Phys 1995;22: 1141–1156.

    Article  PubMed  CAS  Google Scholar 

  19. Hanks GE, Lee WR, Hanlon AL, et al. Conformai technique dose escalation for prostate cancer: Biochemical evidence of improved cancer control with higher doses in patients with pretreatment prostate-specific antigen >10 ng/ml. Int J Radiat Oncol Biol Phys 1996;35:861–868.

    Article  PubMed  CAS  Google Scholar 

  20. Hensler E, Auer T. Ringversuch dynamisches Verhalten von Linearbeschleunigern. In: Leitner H, Stücklschweiger G, Hrsg. Medizinische Physik 96. Graz: Universitätsklinik für Radiologie, 1996:29–30.

    Google Scholar 

  21. Hill RW, Carol MP, Curran BH, et al. Delivery of intensity modulated radiation Ttherapy using computer-controlled multileaf collimators with the CORVUS inverse treatment planning system. In: Leavitt D, ed. The use of computers in radiation therapy. Proc. of the 12th ICCR, Salt Lake City, 1996:394–7.

  22. Hyodynmaa S, Gustafsson A, Brahme A. Optimization of conformai electron beam therapy using energy- and fluence-modulated beams. Med Phys 1996;23:659–666.

    Article  PubMed  CAS  Google Scholar 

  23. ICRU Report 50. Prescribing, recording, and reporting photon beam therapy. Bethesda: International Commision on Radiation Units and Measurements, 1993.

    Google Scholar 

  24. Kallman P, Lind BK, Brahme A. An algorithm for maximizing the probability of complication-free tumour control in radiation therapy. Phys Med Biol 1992;37:871–790.

    Article  PubMed  CAS  Google Scholar 

  25. Kneschaurek P, Hugo C, Wehrmann R. Optimization of activity distribution in brachytherapy. In: Breit A, Heuck A, Lukas P, eds. ART tumor response monitoring and treatment planning. Berlin-Heidelberg-New York: Springer, 1992:417–424.

    Google Scholar 

  26. Kneschaurek P, Promberger C, Schweikard A. Eine auflösungsvollständige Methode zur inversen Bestrahlungsplanung. Strahlenther Onkol 1996;172:Sonderheft 1:57.

    Google Scholar 

  27. Kneschaurek P. Optimization of dose distribution in brachytherapy: Radiobiological aspects. In: Zamboglu N, ed. New developments in interstitial remote controlled brachytherapy. München: Zuckschwerdt, 1997:30–35.

    Google Scholar 

  28. Kooy HM, Barth NH. The verification of an inverse problem in radiation therapy. Int J Radiat Oncol Biol Phys 1990;18:433–439.

    PubMed  CAS  Google Scholar 

  29. Kutcher G; Burman C, Brewster L, et al. Histogram reduction method for calculating complcation probabilities for three-dimensional treatment planning evaluation. Int J Radiat Oncol Biol Phys 1991;21:137–147.

    PubMed  CAS  Google Scholar 

  30. Ling CC, Burman C, Chui CS, et al. Conformai radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multi-leaf-collimation. Int J Radiat Oncol Biol Phys 1996;35:721–730.

    Article  PubMed  CAS  Google Scholar 

  31. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: A new concept for the delivery of conformai radiotherapy. Med Phys 1993;20:1709–1719.

    Article  PubMed  CAS  Google Scholar 

  32. Martel MK, Ten Haken RK, Hazuka MB, et al. Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 1994;28:575–581.

    PubMed  CAS  Google Scholar 

  33. Mohan R, Mageras GS, Baldwin B, et al. Clinically relevant optimization of 3D conformai treatment. Med Phys 1992;19:933–944.

    Article  PubMed  CAS  Google Scholar 

  34. Niemierko A, Urie M, Goitein M. Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 1992;23:99–108.

    PubMed  CAS  Google Scholar 

  35. Rosen I, Lane R, Morrill S, et al. Treatment plan optimization using linear programming. Med Phys 1991;18:141–152.

    Article  PubMed  CAS  Google Scholar 

  36. Schraube P, von Kampen M, Oetzel D, et al. The impact of 3-D radiotherapy planning after a pneumectomy compared to a conventional treatment set-up. Radiother Oncol 1995;37:65–70.

    Article  PubMed  CAS  Google Scholar 

  37. Soderstrom S, Brahme A. Which is the most suitable number of photon beam portals in coplanar radiation therapy? Int J Radiat Oncol Biol Phys 1995;33:151–159.

    Article  PubMed  CAS  Google Scholar 

  38. Soderstrom S, Gustafsson A, Brahme A. The clinical value of different treatment objectives and degrees of freedom in radiation therapy optimization. Radiother Oncol 1993;29:148–163.

    Article  PubMed  CAS  Google Scholar 

  39. Sodertrom S, Brahme A. Optimization of the dose delivery in a few field techniques using radiobiological objective functions. Med Phys 1993;20:1201–1210.

    Article  PubMed  CAS  Google Scholar 

  40. Stein J, Bortfeld T, Dörschel B, et al. Dynamic X-Ray-compensation for conformai Radiotherapy by means of multi-leaf collimation. Radiother Oncol 1994;32:163–173.

    Article  PubMed  CAS  Google Scholar 

  41. Stein J, Mohan R, Wang XH, et al. Number and orientation of beams in intensity-modulated radiation treatments. Med Phys 1997;24:149–160.

    Article  PubMed  CAS  Google Scholar 

  42. Ten Haken RK, Kessler ML, Sandler HM. A quantitatative assessment of the addition of MRI to CT-based 3-D treatment planning of brain tumors. Radiother Oncol 1992;25:121–133.

    Article  PubMed  Google Scholar 

  43. Van der Laarse R, Edmundson GK, Luthmann RW, et al. Optimization of HDR brachytherapy dose distributions. Activity J 1990;5:94–102.

    Google Scholar 

  44. Wang X, Spirou S, LoSasso T, et al. Dosimetric verification of intensity modulated fields. Med Phys 1996;23:317–327.

    Article  PubMed  CAS  Google Scholar 

  45. Wazer DE, Ling M, Kramer B, et al. Clinical applications of IMRT for malignant tumors of the CNS. In: Sternick ES, ed. The theory and practice of intensity modulated radiation therapy. Madison, Wisc., USA: Advanced Medical Publishing, 1997:178–193.

    Google Scholar 

  46. Webb S. The physics of conformai radiotherapy. Bristol: IOP Publishing, 1997.

    Google Scholar 

  47. Webb S. Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by multi-leaf collimator: II. Inclusion of two-dimensional modulation of X-ray intensity. Phys Med Biol 1992;37:1689–1704.

    Article  PubMed  CAS  Google Scholar 

  48. Yu CX. Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1955;40:1435–1449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kneschaurek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, W., Kneschaurek, P. Inverse bestrahlungsplanung. Strahlentherapie und Onkologie 175, 197–207 (1999). https://doi.org/10.1007/BF02742396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02742396

Schlüsselwörter

Key Words

Navigation