Skip to main content
Log in

A quantum wavelet for quantum optics

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Aquantum, or operator-valued, wavelet is defined for a general density operator\(\hat \rho \), in a basis generated by a general observable\(\hat \theta \) by defining an operator-valued dilation. The scale changing part of the dilation is shown to correspond to the Yuen squeeze operator. The wavelet gives a family of operator-valued coefficients which represent a given density operator in the eigenbasis of\(\hat \theta \), possibly a complete set of commuting observables. The wavelet is given in both the Heisenberg and Schrödinger pictures. Then aninverse problem is formulated which allows an unknown density operator to be calculated in terms of the family of all wavelet operators. It is interesting that a limiting process is required to obtain a unique inverse, when one exists. Then the Heisenberg-picture dilation is applied to two known examples: the unitary process of phase sensitive amplification and the irreversible process of number amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Morlet, G. Aheens, I. Fourgean andD. Giard:Geophysics.,47, 203 (1982).

    Article  ADS  Google Scholar 

  2. A. Grossmann andJ. Morlet:SIAM J. Math. Anal.,15, 723 (1984).

    Article  MathSciNet  Google Scholar 

  3. P. G. Lemariê andY. Meyer:Rev. Math. Iberoamer.,2, 1 (1986).

    Article  Google Scholar 

  4. I. Daubechies:Commun. Pure Appl Math.,41, 909 (1988).

    Article  MathSciNet  Google Scholar 

  5. M. Frazier andB. Jawerth:J. Funct. Anal.,93, 134, (1990).

    Article  MathSciNet  Google Scholar 

  6. J. M. Combes, A. Grossmann andPh. Tchamitchian (Editors):Wavelets, Time-Fre- quency Methods and Phase-Space (Springer-Verlag, Berlin and New York, 1989).

    Google Scholar 

  7. K. Chadan andP. C. Sabatier:Inverse Problem in Quantum Scattering Theory 2/E (Springer-Verlag, Berlin and New York, 1989).

    Book  Google Scholar 

  8. B. DeFacio C. R. Thompson andG. V. Welland: inDigital Image Synthesis and Inverse Optics, Proc. SPIE,1351, 21 (1990).

    Article  ADS  Google Scholar 

  9. B. DeFacio andC. R. Thompson: inInverse Problems in Scattering and Imaging, edited byM. Bertero andE. R. Pike, NATO ARW at Cape Cod, Mass., April 1991 (Adam Hilger, Bristol, Philadelphia, New York, 1992), p. 180.

  10. B. A. E. Saleh andM. C. Teich:Fundamental of Photonics (John Wiley, New York, N.Y., 1991).

    Book  Google Scholar 

  11. R. J. Glauber:Phys. Rev.,130, 2529 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. R. Klauder andB.-S. Skagerstam:Coherent States (World Scientific Press, Singapore, 1990).

    Google Scholar 

  13. W.-T. Zhang D. H. Feng andR. Gilmore:Rev. Mod. Phys.,62, 867 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  14. C. J. Isham andJ. R. Klauder:J. Math. Phys.,32, 607 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  15. H. E. Moses andA. F. Quesada:J. Math. Phys.,15, 748 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Kaiser:SIAM J. Math. Anal.,23, 222 (1992).

    Article  MathSciNet  Google Scholar 

  17. H. P. Yuen:Phys. Rev. A,13, 2226 (1976).

    Article  ADS  Google Scholar 

  18. L.-A. Wu, M. Xiao andH. J. Kimble:J. Opt. Soc. Am. B,4, 1467 (1987).

    ADS  Google Scholar 

  19. E. W. Aslaken andJ. R. Klauder:J. Math. Phys.,9, 206 (1968);10, 2267 (1969).

    Article  ADS  Google Scholar 

  20. G. M. D’Ariano:Phys. Rev. A,43, 2550 (1991).

    Article  ADS  Google Scholar 

  21. G. Lindblad: inQuantum Aspects of Optical Communications, edited byC. Bendjaballah, O. Hirota andS. Reynaud,Lect. Notes Phys., 37 (Springer, Berlin-New York, 1991), p. 325.

    Google Scholar 

  22. I. Daubechies andA. Grossmann:J. Math. Phys.,21, 2080 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  23. G. C. Emch:Algebraic Methods in Statistical Mechanics and Quantum Field Theory (John Wiley, New York, N.Y., 1972); see especially pp. 117–141.

    Google Scholar 

  24. M. Z. Nashed (Editor):Generalized Inverses and Applcations (Academic Press, New York, N.Y., 1976).

    Google Scholar 

  25. G. Kaiser:J. Math. Phys.,18, 952 (1977);19, 502 (1978).

    Article  ADS  Google Scholar 

  26. G. Kaiser:Quantum Physics, Relativity and Complex Space-Time (North-Holland, Amsterdam, 1990).

    Google Scholar 

  27. G. M. D’Ariano:Proceedings of the Workshop on Squeezed States and the Uncertainty Relations, University of Maryland, March 28–30, 1991, edited byD. Han, Y. S. Kim andW. W. Zachary, NASA CP-3235 (1992), p. 311.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ariano, G.M., DeFacio, B. A quantum wavelet for quantum optics. Il Nuovo Cimento B 108, 753–763 (1993). https://doi.org/10.1007/BF02741873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741873

PACS

PACS

Navigation