Skip to main content
Log in

Electronic structure and ionic conductivity in calcium- and yttrium-stabilized zirconium dioxide

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure, chemical bonding, and ionic transport were investigated for ZrO2 polymorphs and solid solutions ZrO2-Ca0 and ZrO2-Y2O3 using the LMTO ab initio self-consistent method in a tight binding approximation and Hückel’s semiempirical method. In stabilized zirconium dioxide, ionic conductivity is mainly due to vacancies in the oxygen sublattice. The mechanism of the fluorite stmcture by calcium and yttrium impurities is considered. The nonlinear variation of the ionic conductivity of ZrO2 is interpreted as a function of the phase composition of solid solutions. The clusterization effect is first supported by ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Shen. T. Y. Tien, and I. V. Chen,.J. Am. Ceram. Soc,75, 1108–1112 (1992).

    Article  Google Scholar 

  2. M. Yoshimura,Bull. Am. Ceram. Soc,67, 1950–1956 (1988).

    CAS  Google Scholar 

  3. E. A. Ukshe,Solid Electrolytes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  4. J. B. GoodenovSolid State Ionics,94, 17–25 (1997).

    Article  Google Scholar 

  5. A. R. West,Solid State Chemistry and Its Applications, Wiley, New York (1984).

    Google Scholar 

  6. T. Y. Tien and E. G. Subbarao,J. Chem. Phys.,39, 1041–1047 (1963).

    Article  CAS  Google Scholar 

  7. M. Ya. Hodos, V. M. Cherkashenko, N. V. Krivosheev, et al.,Izv. Akad. Nauk SSSR, Neorg. Mater.,21, 2059–2064 (1985).

    Google Scholar 

  8. A. N. Vlasov,élektrokhim.,25, 699–702 (1989).

    CAS  Google Scholar 

  9. P. Li, I.-W. Chen, and J. E. Penner-Hahn.Phys. Rev. B,48, 10063–10089 (1993).

    Article  CAS  Google Scholar 

  10. S. P. Freidman, M. Ya. Hodos. N. V. Krivosheev, and V. A. Gubanov.Zh. Stmkt. Khim. 27, 24–28 (1986).

    Google Scholar 

  11. A. B. Sobolev, A. P. Khaimenov, A. N. Varaksin, and O. A. Keda,A Collection of Scientific Transactions, Ural Branch, Russian Academy of Sciences, Sverdlovsk (1992), pp. 17–35.

    Google Scholar 

  12. H. J. F. Jansen,Phys. Rev. B,43, 7267–7278 (1991).

    Article  CAS  Google Scholar 

  13. R. H. French, S. J. Glass, F. S. Ohuchi, et al.,Phys. Rev. B, Cond. Mat.,49. 5133–5142 (1994).

    Google Scholar 

  14. E. V. Stefanovich. A. L. Shluger, and C. R. A. Catlow,Phys. Rev. B. 49, 11560–11571 (1994).

    Article  CAS  Google Scholar 

  15. G. A. Olkhovich, I. I. Naumov, and O. I. Velikokhatnyi,.J. Phys., Cond. Mat.,7, 1273–1282 (1995).

    Article  Google Scholar 

  16. W. C. Mackrodt and P. M. Woodrow,.J. Am. Ceram. Soc,69, 277–280 (1986).

    Article  CAS  Google Scholar 

  17. A. N. Varaksin,Interaction and Migration of Point Structural Defects in Dielectrics Bused on Alkali Halide Crystals (computer simulation) [in Russian), Ural Branch, Russian Academy of Sciences, Ekaterinburg (1997).

    Google Scholar 

  18. V. M. Zainullina, V. P. Zhukov, and V. M. Zhukovskii, to appear in:Phys. Status Solidi (b).

  19. O.-K. Andersen, Z. Pawlowska, and O. Jepsen,Phys. Rev. B,34, 5253–5269 (1986).

    Article  CAS  Google Scholar 

  20. W. R. L. Lambrecht and O.-K. Andersen,Phys. Rev.,B34, 2439–2449 (1986).

    Google Scholar 

  21. P.-O. Löwdin,J. Chem. Phys.,19, 1396–1440 (1951).

    Article  Google Scholar 

  22. S. Alvarez,Tables of Parameters for Extended Hückel Calculations, UniversitÄt de Barselona, Barselona (1989).

    Google Scholar 

  23. V. N. Chebotin and M. V. Perfiliev,Electrochemistiy of Solid Electrolytes fin Russian), Khimiya, Moscow (1978).

    Google Scholar 

  24. T. H. Etsell and S. N. Flengas,Chem. Rev. 70. 339–376 (1970).

    Article  CAS  Google Scholar 

  25. J. M. Dixon, L. D. LaGrange, U. Merten. et al.,.J. Electrochem. Soc,110, 276–280 (1963).

    Article  CAS  Google Scholar 

  26. é. Kh. Kurumchin, “Kinetics of oxygen exchange in electrochemical systems based on solid oxide electrolytes,” Chemical Sciences Doctoral Dissertation, Ekaterinburg (1997).

  27. M. O'Keefe, in:The Chemistry of Extended Defects in Nonmetallic Solids, E. Le Roy and M. O'Keefe (eds.), North-Holland, Amsterdam (1970).

    Google Scholar 

  28. R. E. Carter and W. L. Roth,Electromotive Force Measurements in High Temperature Systems. Institute of Mining and Metallurgy, London (1968).

    Google Scholar 

  29. M. R. Thronber and D. J. Bevan,J. Solid State Chem.,1, 536–544 (1970).

    Article  Google Scholar 

  30. D. Michel,Rev. Inter. Hautes Temp. Refract.,9, 225–242 (1972).

    CAS  Google Scholar 

  31. V. Longo and L. Podda,J. Mat. Sci.,16, 839–841 (1988).

    Article  Google Scholar 

  32. V. Longo, D. Minichelli. and F. Ricciardiello,Sci. Ceram.,11, 171–176 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhumal Stivktumoi Khimii, Vol. 41, No. 2, pp. 229–239, March-April, 2(XX).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainullina, V.M., Zhukov, V.P., Zhukovskii, V.M. et al. Electronic structure and ionic conductivity in calcium- and yttrium-stabilized zirconium dioxide. J Struct Chem 41, 185–193 (2000). https://doi.org/10.1007/BF02741581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741581

Keywords

Navigation