Skip to main content
Log in

Spatiotemporal complexity of the universe at subhorizon scales

  • Note Brevi
  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

This is a short note on thespatiotemporal complexity of the dynamical state(s) of the Universe at subhorizon scales (up to 300 Mpc). There are reasons, based mainly on infrared radiative divergences, to believe that one can encounter a flicker noise in the time domain, while in the space domain, the scaling laws are reflected in the (multi)fractal distribution of galaxies and their clusters. There are recent suggestions on a unifying treatment of these two aspects within the concept of spatiotemporal complexity of dynamical systems driven out of equilibrium. Spatiotemporal complexity of the subhorizon dynamical state(s) of the Universe is a conceptually nice idea and may lead to progress in our understanding of the material structures at large scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peebles P. J. E.,The Large Scale Structure of the Universe (Princeton University Press, Princeton, N.J.) 1980;Principles of Physical Cosmology (Princeton University Press, Princeton, N.J.) 1993.

    Google Scholar 

  2. Borgani S. et al., Phys. Rev. E,47 (1993) 3879;Borgani S., to be published inPhys. Rep. and references therein.

    Article  ADS  Google Scholar 

  3. Ovrut B. A.,Large scale structure and percolation theory, UPR-0521T (1992); invited talk at theXV International Warsaw Meeting on Elementary Particle Physics, Kasimierz,Poland, May 25–29, 1992.

  4. Gurbatov S. N., Saichev A. I. andShandarin S. F.,Mon. Not. R. Astron. Soc.,236 (1989) 385;Berera A. andFang L. Z.,Phys. Rev. Lett.,72 (1994) 458.

    Article  ADS  Google Scholar 

  5. Bak P., Tang C. andWiesenfeld K.,Phys. Rev. Lett.,59 (1987) 381;Phys. Rev. A,38 (1988) 364.

    Article  MathSciNet  ADS  Google Scholar 

  6. Maslov S., Paczuski M. andBak P.,Phys. Rev. Lett.,73 (1994) 2162.

    Article  ADS  Google Scholar 

  7. Lowen S. B. andTeich M. C.,Phys. Rev. E,47 (1993) 992.

    Article  ADS  Google Scholar 

  8. Press W. H.,Commun. Astrophys.,7 (1978) 103.

    ADS  Google Scholar 

  9. Bunch T. S. andDavies P. C. W.,Proc. R. Soc. London, Ser. A,360 (1978) 117.

    Article  MathSciNet  ADS  Google Scholar 

  10. Ford L. H. andParker L.,Phys. Rev. D,16 (1977) 245;Sahni V.,Class. Quantum Gran,5 (1988) L113 and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  11. Tsamis N. C. andWoodard R. P.,The physical basis for infrared divergences in inflationary quantum gravity, UFIFT-HEP-93-17/CRETE-93-11 (1993);Strong infrared effects in quantum gravity, UFIFT-HEP-92-24/CRETE-92-17 (1992).

  12. Folacci A.,Phys. Rev. D,46 (1992) 2553.

    Article  MathSciNet  ADS  Google Scholar 

  13. Handel P. H.,Phys. Rev. Lett.,34 (1975) 1492;Phys. Rev. A,22 (1980) 745.

    Article  ADS  Google Scholar 

  14. Handel P. H.,Phys. Rev. A,38 (1988) 3082.

    Article  ADS  Google Scholar 

  15. Handel P. H., inNoise in Physical Systems and 1/fNoise, edited byA. D’Amico andP. Mazzetti (Elsevier) 1986;Weinberg S.,Phys. Rev. B,140 (1965) 516.

  16. Sokolov I. Yu., astro-ph/9405060.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosu, H. Spatiotemporal complexity of the universe at subhorizon scales. Nuov Cim B 110, 457–459 (1995). https://doi.org/10.1007/BF02741455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741455

PACS

PACS

Navigation