Skip to main content
Log in

The ordered visual transduction complex of the squid photoreceptor membrane

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The study of visual transduction has given invaluable insight into the mechanisms of signal transduction by heptahelical receptors that act via guanine nucleotide binding proteins (G-proteins). However, the cyclic-GMP second messenger system seen in vertebrate photoreceptor cells is not widely used in other cell types. In contrast, the retina of higher invertebrates, such as squid, offers an equally accessible transduction system, which uses the widespread second messenger chemistry of an increase in cytosolic calcium caused by the production of inositol-(1,4,5)-trisphosphate (InsP3) by the enzyme phospholipase C, and which may be a model for store-operated calcium influx.

In this article, we highlight some key aspects of invertebrate visual transduction as elucidated from the combination of biochemical techniques applied to cephalopods, genetic techniques applied to flies, and electrophysiology applied to the horseshoe crab. We discuss the importance and applicability of ideas drawn from these model systems to the understanding of some general processes in signal transduction, such as the integration of the cytoskeleton into the signal transduction process and the possible modes of regulation of store-operated calcium influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaM:

calmodulin

CDP:

cytidine diphosphate

CDS:

CDP-diacylglycerol synthase

DAG:

diacylglycerol

DHP:

dihydropyridine

Dtrp :

Drosophila visual mutant conferring “transient receptor potential” phenotype

DTRP:

protein encoded byDtrp gene

Dtrpl :

Drosophila visual mutant encoding TRP-like protein

DTRPL:

protein encoded byDtrpl gene

GDP:

guanosine diphosphate

G-protein:

guanine nucleotide binding protein

GMP:

guanosine monophosphate

GRK:

G-protein-linked receptor kinase

GTP:

guanosine triphosphate

inaD:

Drosophila visual mutant confering “inactivation, no after potential” phenotype

INAD:

protein encoded byinaD gene

InsP3 :

inositol-(1,4,5)-trisphosphate

InsP3R:

inositol-(1,4,5)-trisphosphate receptor

norpA :

Drosophila visual mutant conferring “no receptor potential” phenotype

ninaC :

Drosophila visual mutant conferring “neither inactivation nor activation” phenotype

NINAC:

protein produced byninaC gene

PDZ domain:

postsynaptic density protein, disk large, zo-1 domain

PH domain:

Pleckstrin Homology domain

PIP2 :

phosphatidylinositol 4,5-bis-phosphate

PKC:

protein kinase C

PLC:

phosphoinositide-specific phospholipase C

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SML:

sucrose monolaurate (dodecyl-d-fructofuranosyl-d-glucopyranoside)

strp :

squid (Loligo forbesi) homolog ofDrosophila trp gene

sTRP:

protein encoded bystrp gene

References

  1. Berridge M. J. (1993) Inositol trisphosphate and calcium signalling.Nature 361, 315–325.

    PubMed  CAS  Google Scholar 

  2. Putney J. W. Jr. (1990) Capacitative calcium entry revisited.Cell Calcium 116, 611–624.

    Google Scholar 

  3. Berridge M. J. (1995) Capacitative calcium entry.Biochem. J. 312, 1–11.

    PubMed  CAS  Google Scholar 

  4. Dowling J. E. (1987)The Retina: An Approachable Part of the Brain. Harvard University Press, Cambridge, MA.

    Google Scholar 

  5. Yarfitz S. and Hurley J. B. (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors.J. Biol. Chem. 269, 14,329–14,332.

    CAS  Google Scholar 

  6. Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm H. E., and Sigler P. B. (1996) The 2.0Å crystal structure of a heterotrimeric G protein.Nature 379, 311–319.

    PubMed  CAS  Google Scholar 

  7. Sondek J., Bohm A., Lambright D. G., Hamm H. E., and Sigler P. B. (1996) Crystal structure of a G protein βγ dimer at 2.1Å resolutionNature 379, 369–374.

    PubMed  CAS  Google Scholar 

  8. Tomita T. (1963) Electrical activity in the vertebrate retina.J. Opt. Soc. Am. 53, 49–57.

    PubMed  CAS  Google Scholar 

  9. Hagins W. A., Penn R. D., and Yoshikami S. (1970) Dark current and photocurrent in retinal rods.Biophys. J. 10, 380–412.

    PubMed  CAS  Google Scholar 

  10. Zuckerman R. (1973) Ionic analysis of photoreceptor membrane currents.J. Physiol. 235, 333–354.

    PubMed  CAS  Google Scholar 

  11. Toyoda J., Nosahi H., and Tomita T. (1969) Light induced changes in single photoreceptorsof Necturus andGekko.Vision Res. 9, 453–463.

    PubMed  CAS  Google Scholar 

  12. Stryer L. (1986) Cyclic GMP cascade of vision.Ann. Rev. Neurosc. 9, 87–119.

    CAS  Google Scholar 

  13. Noel J. P., Hamm H. E., and Sigler P. B. (1993) The 2.2Å crystal structure of transducin α complexed with GTPγS.Nature 366, 654–663.

    PubMed  CAS  Google Scholar 

  14. Lambright D. G., Noel J. P., Hamm H. E., and Sigler P. B. (1994) Structural determinant for activation of the α subunit of heterotrimeric G proteins.Nature 369, 621–628.

    PubMed  CAS  Google Scholar 

  15. Deterre P., Bigay J., Robert M., Pfister C., Kuhn H., and Chabre M. (1986) Activation of retinal rod cGMP-PDE by transducin.Proteins 1, 188–193.

    PubMed  CAS  Google Scholar 

  16. Fesenko E. E., Kolesnikov S. S., and Lyubarski A. L. (1985) Induction by cGMP of cationic conductance in plasma membrane of rod outer segment.Nature 313, 310–313.

    PubMed  CAS  Google Scholar 

  17. Yau K.-W. and Nakatani K. (1985) Light suppressible, cGMP-sensitive conductance in the plasma membrane of a truncated rod outer segment.Nature 317, 252–255.

    PubMed  CAS  Google Scholar 

  18. Yau K.-W. and Nakatani K. (1985) Light induced reduction of cytoplasmic calcium in retinal rod outer segments.Nature 313, 579–583.

    PubMed  CAS  Google Scholar 

  19. Kawamura S., Hisatomi O., Kayada S., Tokunaya F., and Kuo C. H. (1993) Recoverin has S-modulin activity in frog rods.J. Biol. Chem. 268, 14,579–14,582.

    CAS  Google Scholar 

  20. Stern J. H., Knutson H., and macLeish P. R. (1987) Divalent cations directly affect the conductance of excised patches of rod photoreceptor membrane.Science 236, 1674–1678

    PubMed  CAS  Google Scholar 

  21. Koch K. W. and Stryer L. (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions.Nature 334, 64–66.

    PubMed  CAS  Google Scholar 

  22. Ruiz-Avila L., McLaughlin S. K., Wildman D., McKinnon P. J., Robichon A., Spickofsky N., et al. (1995) Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells.Nature 376, 80–85.

    PubMed  CAS  Google Scholar 

  23. Bacigalupo J. and Lisman J. (1983) Single channel currents activated by light inLimulus ventral photreceptors.Nature 304, 268–270.

    PubMed  CAS  Google Scholar 

  24. Sarthy P. V. (1991) Histamine: a neurotransmitter candidate forDrosophila photoreceptors.J. Neurochem. 57, 1757–1768.

    PubMed  CAS  Google Scholar 

  25. Payne R. and Fein A. (1987) Inositol-1,4,5-trisphosphate releases calcium from specialized sites withinLimulus photoreceptors.J. Cell Biol. 104, 933–937.

    PubMed  CAS  Google Scholar 

  26. Fein A. and Payne R. (1989) Phototransduction inLimulus ventral photoreceptors: roles of calcium and inositol trisphosphate, inFacets of Vision, (Stavenga D. G. and Hardie R. C., eds.) Springer-Verlag, Berlin, pp. 173–185.

    Google Scholar 

  27. Walz B. (1982) Ca2+sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor.J. Cell Biol. 93, 849–859.

    PubMed  CAS  Google Scholar 

  28. Brown J. E. and Rubin L. J. (1984) A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium inLimulus photoreceptors.Biochem. Biophys. Res. Commun. 125, 1137–1142.

    PubMed  CAS  Google Scholar 

  29. Brown J. E., Rubin L. J., Ghalayini A. J., Tarver A. P., Irvine R. F., Berridge M. J., et al. (1984)myo-Inositol polyphosphate may be a messenger for visual excitation inLimulus photoreceptors.Nature 311, 160–163.

    PubMed  CAS  Google Scholar 

  30. Fein A., Payne R., Corson D. W., Berridge M. J., and Irvine R. F. (1984) Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate.Nature 311, 157–160.

    PubMed  CAS  Google Scholar 

  31. Deckert A., Nagy K., Helrich C. S., and Stieve H. (1992) Three components in the light induced current of theLimulus ventral photoreceptor.J. Physiol. 453, 69–96.

    PubMed  CAS  Google Scholar 

  32. Nagy K. (1993) Cyclic nucleotides and inisitol trisphosphate activate different components of the receptor current inLimulus ventral nerve photoreceptor.Neuroscience Lett. 152, 1–4.

    CAS  Google Scholar 

  33. Johnson E. C., Robinson P. R., and Lisman J. E. (1986) Cyclic GMP is involved in the excitation of invertebrate photoreceptors.Nature 324, 468–470.

    PubMed  CAS  Google Scholar 

  34. Bacigalupo J., Johnson E. C., Vergara C., and Lisman J. E. (1991) Light-dependent channels from excised patches ofLimulus ventral photoreceptors are opened by cGMP.Proc. Natl. Acad. Sci. USA 88, 7938–7942.

    PubMed  CAS  Google Scholar 

  35. Brown J. E., Faddis M., and Combs A. (1992) Light does not induce an increase in cyclic-GMP content of squid orLimulus photoreceptors.Exp. Eye Res. 54, 403–410.

    PubMed  CAS  Google Scholar 

  36. Rayer B., Naynert M., and Stieve H. (1990) Phototransduction: different mechanisms in vertebrates and invertebrates.J. Photochem. Photobiol. B-Biol. 7, 107–148.

    CAS  Google Scholar 

  37. Shin J., Richard E. A., and Lisman J. E. (1993) Ca2+ is an obligatory intermediate in the excitation cascade ofLimulus photoreceptors.Neuron 11, 845–855.

    PubMed  CAS  Google Scholar 

  38. Richard E. A., Ghosh S., Lowenstein J. M., and Lisman J. E. (1997) Ca2+/calmodulin-binding peptides block phototransduction inLimulus ventral photoreceptors: Evidence for direct inhibition of phospholipase C.Proc. Natl. Acad. Sci. USA 94, 14,095–14,099.

    CAS  Google Scholar 

  39. Nagy K. (1991) Biophysical processes in invertebrate photoreceptors: recent progress and a critical overview based onLimulus photoreceptors.Q. Rev. Biophys. 24, 165–226.

    PubMed  CAS  Google Scholar 

  40. Bloomquist B. T., Shortridge R. D., Schneuwly S., Perdew M., Montell C., Stellar H., et al. (1988) Isolation of a putative phospholipase C gene ofDrosophila, norpA, and its role in phototransduction.Cell. 54, 723–733.

    PubMed  CAS  Google Scholar 

  41. Peretz A., Suss-Toby E., Rom-Glas A., Arnon A., Payne R., and Minke B. (1994) The light response ofDrosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specific mutations.Neuron 12, 1257–1267.

    PubMed  CAS  Google Scholar 

  42. Wu L., Niemeyer B., Colley N., Socolich, M., and Zuker C. S. (1995) Regulation of PLC mediated signallingin vivo by CDP-diacylglycerol synthase.Nature 373, 216–222.

    PubMed  CAS  Google Scholar 

  43. Frank T. M. and Fein A. (1991) The role of the inositol phosphate cascade in visual excitation of invertebrate microvillar photoreceptors.J. Gen. Physiol. 97, 697–723.

    PubMed  CAS  Google Scholar 

  44. Lee Y. J., Dobbs M. B., Verardi M. L., and Hyde D. R. (1990)dgq: a drosophila gene encoding a visual system-specific G α molecule.Neuron 5, 889–98.

    PubMed  CAS  Google Scholar 

  45. Baumann A., Frings S., Godde M., Seifert R., and Kaupp U. B. (1994) Primary structure and functional expression of aDrosophila cyclic nucleotide-gated channel present in eyes and antennae.EMBO J. 13, 5040–5050.

    PubMed  CAS  Google Scholar 

  46. Niemeyer B. A., Suzuki E., Scott K., Jalink K., and Zuker C. S. (1996) TheDrsophila light activated conductance is composed of the two channels TRP and TRPL.Cell 85, 651–659.

    PubMed  CAS  Google Scholar 

  47. Vaca L., Sinkins W. G., Hu Y., Kunze D. L., and Schilling W. P. (1994) Activation of recombinanttrp by thapsigargin in Sf9 insect cells.Am. J. Physiol. 267, C1501–1505.

    PubMed  CAS  Google Scholar 

  48. Peterson C. C. H., Berridge M. J., Borgese M. F., and Bennett D. L. (1995) Putative capacitative calcium entry channels: expression ofDrosophila trp and evidence for the existence of vertebrate homologues.Biochem. J. 311, 41–44.

    Google Scholar 

  49. Vandenberg C. A. and Montal M. (1984) Light-regulated biochemical events in invertebrate photoreceptors.Biochemistry 23, 2339–2352.

    PubMed  CAS  Google Scholar 

  50. Robinson P. R., Wood S. F., Szuts E. Z., Fein A., Hamm H. E., and Lisman J. E. (1990) Light-dependent GTP-binding proteins in squid photoreceptors.Biochem. J. 272, 79–85.

    PubMed  CAS  Google Scholar 

  51. Fyles J. M., Baverstock J., Baer K., and Saibil H. R. (1991) Effects of calcium on light-activated GTP-binding proteins in squid photoreceptor membranes.Comparative Biochem. Physiol.-B: Comp. Biochem. 98, 215–221.

    CAS  Google Scholar 

  52. Ryba N. J. P., Findlay J. B. C., and Reid J. D. (1993) The molecular cloning of the squid (Loligo forbesi) visual Gq-α subunit and its expression inSaccharomyces cerevisiae.Biochem. J. 292, 333–341.

    PubMed  CAS  Google Scholar 

  53. Kikkawa S., Tominaga K., Nakagawa M., Iwasa T., and Tsuda M. (1996) Simple purification and functional reconstitution of octopus photoreceptor Gq, which couples rhodopsin to phospholipase C.Biochemistry 35, 15,857–15,864.

    CAS  Google Scholar 

  54. Schraermeyer U., Stieve H., and Rack M. (1995) Immunoelectron-microscopic study of G-protein distribution in photoreceptor cells of the cephalopodSepia officinalis.Tissue & Cell 27, 317–322.

    CAS  Google Scholar 

  55. Szuts E. Z., Wood S. F., Reid M. S., and Fein A. (1987) Light stimulates the rapid formation of inositol trisphosphate in squid retinas.Biochem. J. 240, 929–932.

    Google Scholar 

  56. Brown J. E., Watkins D. C., and Malbon C. C. (1987) Light-induced changes in the content of inositol phosphates in squid (Loligo pealei) retina.Biochem. J. 247, 293–297.

    PubMed  CAS  Google Scholar 

  57. Baer K. M. and Saibil H. R. (1988) Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes.J. Biol. Chem. 263, 17–20.

    PubMed  CAS  Google Scholar 

  58. Wood S. F., Szuts E. Z., and Fein A. (1989) Inositol trisphosphate production in squid photoreceptors. Activation by light, aluminum fluoride, and guanine nucleotides.J. Biol. Chem. 264, 12,970–12,976.

    CAS  Google Scholar 

  59. Monk P. D., Carne A., Liu S-H, Ford J. W., Keen J. N., and Findlay J. B. C. (1996) Isolation cloning and characterisation of atrp homologue from squid (Loligo forbesi) photoreceptor membranes.J. Neurochem. 67, 2227–2235.

    PubMed  CAS  Google Scholar 

  60. Gorman A. L. F. and McReynolds J. S. (1969) Hyperpolarizing and depolarizing receptor potentials in the scallop eye.Science 183, 658–659.

    Google Scholar 

  61. Kojima D., Terakita A., Ishikawa T., Tsukahara Y., Maeda A., and Shichida Y. (1997) A novel G0-mediated phototransduction cascade in scallop visual cells.J. Biol. Chem. 272, 22,979–22,982.

    CAS  Google Scholar 

  62. Finn J. T., Solessio E. C., and Yau K.-W. (1997) A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye.Nature 385, 815–819.

    PubMed  CAS  Google Scholar 

  63. Provencio I., Jiang G., De Grip W., Pär Hayes W., and Rollag M. D. (1998) Melanopsin: an opsin in melanophores, brain, and eye.Proc. Natl. Acad. Sci. USA 95, 340–345.

    PubMed  CAS  Google Scholar 

  64. Hall M. D., Hoon M. A., Ryba N. J. P., Pottinger J. D. D., Keen J. N., Saibil H. R., et al. (1991) Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor.Biochem. J. 274, 35–40.

    PubMed  CAS  Google Scholar 

  65. Arnheiter H. (1998) Eyes viewed from the skin.Nature 391, 632–633.

    PubMed  CAS  Google Scholar 

  66. Saibil H. R. and Hewat E. A. (1987) Ordered transmembrane and extracellular structure in squid photoreceptor microvilli.J. Cell Biol. 105, 19–28.

    PubMed  CAS  Google Scholar 

  67. Tsukita S., Tsukita S., and Matsumoto G. (1988) Light-induced structural changes of the cytoskeleton in squid photoreceptor microvilli detected by rapid-freeze method.J Cell Biol. 106, 1151–1160.

    PubMed  CAS  Google Scholar 

  68. Pottinger J. D. D., Ryba N. J. P., Keen J. N., and Findlay J. B. C. (1991) The identification and purification of the heterotrimeric GTP-binding protein from squid (Loligo forbesi) photoreceptors.Biochem. J. 279, 323–326.

    PubMed  CAS  Google Scholar 

  69. Titus M. A. (1997) Unconventional myosins: new frontiers in actin-based motors.Trends Cell Biol. 7, 119–123.

    PubMed  CAS  Google Scholar 

  70. Mermall V., Post P. L., and Mooseker M. S. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction.Science 279, 527–533.

    PubMed  CAS  Google Scholar 

  71. Montell C. and Rubin G. M. (1988) The DrosophilaninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head.Cell 52, 757–772.

    PubMed  CAS  Google Scholar 

  72. Bahler M. (1996) Myosins on the move to signal transduction.Curr. Opinion Cell Biol. 8, 18–22.

    PubMed  CAS  Google Scholar 

  73. Titus M. A. (1997) Motor proteins: myosin V- the multi-purpose transport motor.Curr. Biol. 7, R301–304.

    PubMed  CAS  Google Scholar 

  74. Conway S. (1994) Expression and mutagenesis studies on the squid visual receptor. PhD Thesis, University of Leeds, UK.

    Google Scholar 

  75. Davies A., Schertler G. F., Gowen B. E., and Saibil H. R. (1996) Projection structure of an invertebrate rhodopsin.J. Struct. Biol. 117, 36–44.

    PubMed  CAS  Google Scholar 

  76. Ryba N. J. P., Hoon M. A., Findlay J. B. C., Saibil H. R., Wilkinson J. R., Heimburg T., et al. (1993) Rhodopsin mobility, structure, and lipid-protein interaction in squid photoreceptor membranes.Biochemistry 32, 3298–3305.

    PubMed  CAS  Google Scholar 

  77. Williamson M. P. (1994) The structure and function of proline-rich regions in proteins.Biochem. J. 297, 249–260.

    PubMed  CAS  Google Scholar 

  78. Premont R. T., Inglese J., and Lefkowitz R. J. (1995) Protein kinases that phosphorylate activated G protein-coupled receptors.FASEB J. 9, 175–182.

    PubMed  CAS  Google Scholar 

  79. Tsuda M., Hirata H., and Tsuda T. (1992) Interaction of rhodopsin, G-protein and kinase in octopus photoreceptors.Photochem. Photobiol. 56, 1167–1172.

    PubMed  CAS  Google Scholar 

  80. Kikkawa S., Yoshida N., Nakagawa M., Iwasa T., and Tsuda M. (1998) A novel rhodopsin kinase in octopus photoreceptor possesses a pleckstrin homology domain and is activated by G protein βγ-subunits.J. Biol. Chem. 273, 7441–7447.

    PubMed  CAS  Google Scholar 

  81. Ryba N. J. P., Pottinger J. D. D., Keen J. N., and Findlay, J. B. C. (1991) Sequence of the β-subunit of the phosphatidylinositol-specific phospholipase C-directed GTP-binding protein from squid (Loligo forbesi) photoreceptors.Biochem. J. 273, 225–228.

    PubMed  CAS  Google Scholar 

  82. Lott J. S., Ryba N. J. P., Pottinger J. D. D., Keen J. N., Carne, A., and Findlay J. B. C. (1992) The γ-subunit of the principal G-protein from squid (Loligo forbesi) photoreceptors contains a novel N-terminal sequence.FEBS Lett. 312, 241–244.

    PubMed  CAS  Google Scholar 

  83. Irvine R. and Cullen P. (1996) Inositol phophates—whither bound?Curr. Biol. 6, 537–540.

    PubMed  CAS  Google Scholar 

  84. Ray K. and Ganguly R. (1992) The Drosophila G protein γ subunit gene (D-Gγ1) produces three developmentally regulated transcripts and is predominantly expressed in the central nervous system.J. Biol. Chem. 267, 6086–6092.

    PubMed  CAS  Google Scholar 

  85. Wu D., Jiang H., Katz A., and Simon M. I. (1993) Identification of critical regions on phospholipase C-β1 required for activation by G-proteins.J. Biol. Chem. 268, 3704–3709.

    PubMed  CAS  Google Scholar 

  86. Park D., Jhon D. Y., Lee C. W., Ryu S. H., and Rhee S. G. (1993) Removal of the carboxyl-terminal region of phospholipase C-β1 by calpain abolishes activation by Gαq.J. Biol. Chem. 268, 3710–3714.

    PubMed  CAS  Google Scholar 

  87. Park D., Jhon D. Y., Lee C. W., Lee K. H., and Rhee S. G. (1993) Activation of phospholipase C isozymes by G protein βγ subunits.J. Biol. Chem. 268, 4573–4576.

    PubMed  CAS  Google Scholar 

  88. Smrcka A. V. and Sternweis P. C. (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase Cβ by G protein α and βγ subunits.J. Biol. Chem. 268, 9667–9674.

    PubMed  CAS  Google Scholar 

  89. Parker P. J., Hemmings B. A., and Gierschik P. (1994) PH domains and phospholipases-a meaningful relationship?Trends Biochem. Sci. 19, 54,55.

    PubMed  CAS  Google Scholar 

  90. Kuang Y., Wu Y., Smrcka A., Jiang H., and Wu D. (1996) Identification of a phospholipase Cβ2 region that interacts with Gβγ.Proc. Natl. Acad. Sci. USA 93, 2964–8296.

    PubMed  CAS  Google Scholar 

  91. Sankaran B., Osterhout J., Wu D., and Smrcka A. V. (1998) Identification of a structural element in phospholipase Cβ2 that interacts with G protein βγ subunits.J. Biol. Chem. 273, 7148–7154.

    PubMed  CAS  Google Scholar 

  92. Carne A., McGregor R. A., Bhatia J., Sivaprasadarao A., Keen J. N., Davies A., et al (1995) A β-subclass phosphatidylinositol-specific phospholipase C from squid (Loligo forbesi) photoreceptors exhibiting a truncated C-terminus.FEBS Lett. 372, 243–248.

    PubMed  CAS  Google Scholar 

  93. Mitchell J., Gutierrez J., and Northup J. K. (1995) Purification, characterization, and partial amino acid sequence of a G protein-activated phospholipase C from squid photoreceptors.J. Biol. Chem. 270, 854–859.

    PubMed  CAS  Google Scholar 

  94. Bhatia J., Davies A., Gaudoin J. B., and Saibil H. R. (1996) Rhodopsin, Gq and phospholipase C activation in cephalopod photoreceptors.J. Photochem. Photobiol. B.: Biol. 35, 19–23.

    CAS  Google Scholar 

  95. Suzuki T., Terakita A., Narita K., Nagai K., Tsukahara Y., and Kito Y. (1995) Squid photoreceptor phospholipase C is stimulated by membrane Gqα but not by soluble Gqα.FEBS Lett. 377, 333–337.

    PubMed  CAS  Google Scholar 

  96. Ford J. F., Wilde J. I., Lott J. S., and Findlay J. B. C. Manuscript in preparation.

  97. Cosens D. J. and Manning A. (1969) Abnormal electroretinogram from aDrosophila mutant.Nature 224, 285–287.

    PubMed  CAS  Google Scholar 

  98. Hardie R. C. and Minke B. (1993) Novel Ca2+ channels underlying transduction inDrosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization.Trends Neurosci. 16, 371–376.

    PubMed  CAS  Google Scholar 

  99. Hardie R. C. and Minke B. (1995) Phosphoinositide-mediated phototransduction inDrosophila photoreceptors: the role of Ca2+ andtrp.Cell Calcium 18, 256–274.

    PubMed  CAS  Google Scholar 

  100. Montell C. and Rubin G. M. (1989) Molecular characterisation of theDrosophila trp locuse: a putative integral membrane protein required for phototransduction.Neuron. 2, 1313–1323.

    PubMed  CAS  Google Scholar 

  101. Wong F., Schaefer E. L., Roop B. C., LaMendola J. N., Johnson-Seaton D., and Shao D. (1989) Proper function of theDrosophila trp gene product during pupal development is important for normal visual transduction in the adult.Neuron 3, 81–94.

    PubMed  CAS  Google Scholar 

  102. Phillips A. M., Bull A., and Kelly L. E. (1992) Identification of aDrosophila gene encoding a calmodulin-binding protein with homology to thetrp phototransduction gene.Neuron 8, 631–642.

    PubMed  CAS  Google Scholar 

  103. Kunze D. L., Sinkins W. G., Vaca L., and Schilling W. P. (1997) Properties of singleDrosophila Trpl channels expressed in Sf9 insect cells.Am. J. Physiol. 272, C27-C34.

    PubMed  CAS  Google Scholar 

  104. Lan L., Bawden M. J., Auld A. M., and Barritt G. J. (1996) Expression ofDrosophila trpl cRNA inXenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5′ [γ-thio]triphosphate.Biochem J. 316, 793–803.

    PubMed  CAS  Google Scholar 

  105. Gillo B., Chorna I., Cohen H., Cook B., Manistersky I., Chorev M., et al. (1996) Coexpression ofDrosophila TRP and TRP-like proteins inXenopus oocytes reconstitutes capacitative calcium entry.Proc. Natl. Acad. Sci. USA 93, 14,146–14,151.

    CAS  Google Scholar 

  106. Xu X. Z., Li H. S., Guggino W. B., and Montell C. (1997) Coassembly of TRP and TRPL produces a distinct store-operated conductance.Cell 89, 1155–1164.

    PubMed  CAS  Google Scholar 

  107. Jan L. Y., Jan Y. N., and Hughes H. (1992) Tracing the roots of ion chennels.Cell 69, 715–718.

    PubMed  CAS  Google Scholar 

  108. Birnbaumer L., Zhu X., Jiang M., Boulay G., Peyton M., Vannier B., et al. (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins.Proc. Natl. Acad. Sci. USA 93, 15,195–15,202.

    CAS  Google Scholar 

  109. Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., and Julius D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature 389, 816–824.

    PubMed  CAS  Google Scholar 

  110. Mills J. W. and Mandel L. J. (1994) Cytoskeletal regulation of membrane transport events.FASEB J. 8, 1161–1165.

    PubMed  CAS  Google Scholar 

  111. Bourguignon L. Y. M. and Jin H. (1995) Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2+ release.J. Biol. Chem. 270, 7257–7260.

    PubMed  CAS  Google Scholar 

  112. Bennett D. L., Peterson C. C. H., and Cheek T. R. (1995) Cracking ICRAC in the eye.Curr. Biol. 5, 1225–1228.

    PubMed  CAS  Google Scholar 

  113. Chevesich J., Kreuz A. J., and Montell C. (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signalling complex.Neuron 18, 95–105.

    PubMed  CAS  Google Scholar 

  114. Sinkins W. G., Vaca L., Hu Y., Kunze D. L., and Schilling W. P. (1996) COOH-terminal domain ofDrosophila TRP channels confers thapsigargin sensitivity.J. Biol. Chem. 271, 2955–2960.

    PubMed  CAS  Google Scholar 

  115. Irvine R. F. (1992) Inositol phosphates and Ca2+ entry: toward a proliferation or a simplification?FASEB J. 6, 3085–3091.

    PubMed  CAS  Google Scholar 

  116. Pollock J. A., Assaf A., Peretz A., Nichols C. D., Mojet M. H., Hardie R. C., et al. (1995) TRP: a protein essential for inositide-mediated Ca2+ influx is adjacent to the calcium stores inDrosophila photoreceptors.J. Neurosci. 15, 3747–3760.

    PubMed  CAS  Google Scholar 

  117. Warr C. G. and Kelly L. E. (1996) Identification and characterisation of two distinct calmodulin-binding sites in the TRPL ion-channel protein ofDrosophila melanogaster.Biochem. J. 314, 497–503.

    PubMed  CAS  Google Scholar 

  118. Porter J. A., Minke B., and Montell C. (1995) Calmodulin binding toDrosophila NINAC required for termination of phototransduction.EMBO J. 14, 4450–4459.

    PubMed  CAS  Google Scholar 

  119. Obukhov A. G., Harteneck C., Zobel A., Harhammer R., Kalkbrenner F., Leopoldt D., et al. (1996) Direct activation oftrpl cation channels by Gα11 subunits.EMBO J. 15, 5833–5838.

    PubMed  CAS  Google Scholar 

  120. Dong Y., Kunze D. L., Vaca L., and Schilling W. P. (1995) Ins(1,4,5)P3 activatesDrosophila cation chennel TRPL in recombinant baculovirus-infected Sf9 insect cells.Am. J. Physiol. 269, 1332–1339.

    Google Scholar 

  121. Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., et al. (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade.Nature 388, 243–249.

    PubMed  CAS  Google Scholar 

  122. Huber A., Sander P., Gobert A., Bahner M., Hermann R., and Paulsen R. (1996) The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signalling complex with NorpA, InaC and InaD.EMBO J. 15, 7036–7045.

    PubMed  CAS  Google Scholar 

  123. Shieh B. H. and Zhu M. Y. (1996) Regulation of the TRP Ca2+ channel by INAD inDrosophila photoreceptors.Neuron 16, 991–998.

    PubMed  CAS  Google Scholar 

  124. Fanning A. S. and Anderson J. M. (1996) Protein-protein interactions: PDZ domain networks.Cur. Biol. 6, 1385–1388.

    CAS  Google Scholar 

  125. Scott K. and Zuker C. S. (1998) Assembly of theDrosophila phototransduction cascade into a signalling complex shapes elementary responses.Nature 395, 805–808.

    PubMed  CAS  Google Scholar 

  126. Saibil H. (1990) Cell and molecular biology of photoreceptors.Semi. Neurosci. 2, 15–23.

    Google Scholar 

  127. Körschen H. G., Beyermann M., Müller F., Heck M., Vantler M., Koch K.-W., Kellner R., Wolfrum U., Bode C., Hofmann K. P., and Kaupp U. B. (1999) Interaction of glutamicacid-rich proteins with the cGMP signalling pathway in rod photoreceptors.Nature 400, 761–766.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lott, J.S., Wilde, J.I., Carne, A. et al. The ordered visual transduction complex of the squid photoreceptor membrane. Mol Neurobiol 20, 61–80 (1999). https://doi.org/10.1007/BF02741365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741365

Index Entries

Navigation