Skip to main content
Log in

A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems

  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The present Monte Carlo study compares bootstrap and permutation tests for semiparametric heteroscedastic two-sample testing problems of Behrens-Fisher type. The underlying functionals to be tested are (a) the difference of the means and (b) the Wilcoxon functional P(Y < X) which is invariant under strictly increasing transformations. The consideration leads to semiparametric modifications of Welch type tests for the Behrens-Fisher model and an extended two-sample Wilcoxon test which also works under some null hypothesis with non-exchangeable distributions. The present Monte Carlo study confirms the high quality of studentized permutation tests at finite sample size. They are typically better than tests with asymptotic critical values and for many situations and they are also better than two-sample bootstrap tests when their type I error probabilities are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika, 74, 457–468.

    Article  MathSciNet  Google Scholar 

  • Beran, R. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinement. J. Am. Stat. Assoc., 83, 403, 687–697.

    Article  MathSciNet  Google Scholar 

  • Best, D.J. and Rayner, J.C.W. (1987). Welch’s approximate solution for the Behrens-Fisher problem. Technometrics, 29, 205–210.

    MathSciNet  MATH  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jacknife. Ann. Stat., 7, 1–27.

    Article  Google Scholar 

  • Fisher, R.A. (1936). The fiducial argument in statistical inference. Ann. Eugenics, 6, 391–422.

    Article  Google Scholar 

  • Fung, K.Y. (1979). A Monte Carlo study of the Wilcoxon statistic for the Behrens-Fisher problem. J. Statist. Comput. Simul., 10, 15–24.

    Article  Google Scholar 

  • Gupta, A.K. and Wang, Y. (1999). Some tests with specified size for the Behrens-Fisher problem. Commun. Statis., Theory Meth., 28, 3–4, 511–517.

    Article  MathSciNet  Google Scholar 

  • Hájek, J., Šidák, Z. and Sen, P.K. (1999). Theory of rank tests. Academic Press, Orlando.

    Book  Google Scholar 

  • Heller, G. and Venkatraman, E.S. (1996). Resampling procedures to compare two survival distributions in the presence of right-censored data. Biometrics, 52, 1204–1213.

    Article  Google Scholar 

  • Janssen, A. and Brenner, S. (1990). Monte Carlo results for conditional survival tests under randomly censored data. J. Stat. Comput. Simulation, 39, 1–2, 1–26.

    MathSciNet  Google Scholar 

  • Janssen, A. (1997). Studentized permutation tests for non i.i.d. hypotheses and the generalized Behrens-Fisher problem. Stat. Prob. Letters, 36, 1, 9–21.

    Article  MathSciNet  Google Scholar 

  • Janssen, A. (1999). Testing nonparametric statistical functionals with application to rank tests. J. Stat. Planning and Inference, 81, 1, 71–93.

    Article  MathSciNet  Google Scholar 

  • Janssen, A. and Mayer, C.-D. (2001). Conditional studentized survival tests for randomly censored models. Scand. Journ. Stat., 28, 283–293.

    Article  MathSciNet  Google Scholar 

  • Janssen, A. and Pauls, T. (2002). How do bootstrap and permutation tests work? to appear in Ann. Stat. (www.cs.uni-duesseldorf.de/∼stoch/docs/howdo.html)

  • Lee, A.J. (1990). U-Statistics: Theory and Practice, Dekker, New York.

    MATH  Google Scholar 

  • Lehmann, E.L. (1986). Testing Statistical Hypotheses. Statistical Publishing Society, London.

    Book  Google Scholar 

  • Linnik, Y.W. (1968). Statistical problems with nuisance parameter. Translation of Mathematical Monograph, vol. 20. American Mathematical Society, Providence, RI.

  • Mason, D.M. and Shao, Q.-M. (2001). Bootstrapping the Student t-statistic. Ann. Probab., 29, 1435–1450.

    Article  MathSciNet  Google Scholar 

  • Metha, J.S. and Srinivasan, R. (1970). On the Behrens-Fisher problem. Biometrika, 57, 649–655.

    MATH  Google Scholar 

  • Neuhaus, N. (1993). Conditional rank tests for the two-sample problem under random censorship. Ann. Stat. 21, 1760–1779.

    Article  MathSciNet  Google Scholar 

  • Pfanzagl, J. (1974). On the Behrens-Fisher problem. Biometrica, 61, 39–47.

    Article  MathSciNet  Google Scholar 

  • Pauls, T. 2002. Resampling-Verfahren und ihre Anwendungen in der nichtparametrischen Testtheorie. Dissertation, University of Duesseldorf (in german).

  • Randles, R.H. and Wolfe, D.A. (1979). Introduction to the theory of nonparametric statistics. New York, John Wiley.

    MATH  Google Scholar 

  • Romano, J.P. (1990). On the behaviour of randomization test without a group invariant assumption. J. Amer. Statist. Assoc., 85, 411, 686–692.

    Article  MathSciNet  Google Scholar 

  • Wang, Y.Y. (1970). Probabilities of type I error of the Welch test for the Behrens-Fisher problem. J. Amer. Stat. Assoc., 66, 605–608.

    Article  Google Scholar 

  • Wellek, S. (1996). A new approach to equivalence assessment in standard comparative bioavailability trials by means of the Mann-Whitney statistic. Biom. J., 38, 6, 695–710.

    Article  MathSciNet  Google Scholar 

  • Yuen, K.K. (1974). The two-sample trimmed t for unequal population variance. Biometrika, 61, 165–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, A., Pauls, T. A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems. Computational Statistics 20, 369–383 (2005). https://doi.org/10.1007/BF02741303

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741303

Keywords

Navigation