Forstwissenschaftliches Centralblatt

, Volume 106, Issue 1, pp 248–262 | Cite as

Das Ozonloch und seine möglichen Folgen

  • Uta Schmailzl
Article
  • 40 Downloads

Zusammenfassung

Wir beschreiben die chemischen Prozesse, die für die Bildung und den Abbau des atmosphärischen Ozons verantwortlich sind. Die Vorhersagen von Computermodellen für eine Ozonänderung unter dem Einfluß vom Menschen erzeugter Spurengase werden mit Feldmessungen verglichen. Insbesondere berichten wir über Meßergebnisse vom antarktischen Ozonloch und über einige Deutungsversuche für dieses Phänomen. Die Auswirkungen der stratosphärischen Ozonabnahme und der troposphärischen Ozonzunahme auf Klima und Biosphäre werden diskutiert.

The ozone hole and its possible consequences

Summary

Chemical processes are described which are responsible for the formation and breakup of atmospheric ozone. Predictions of computer models for a change of ozone caused by man-made trace gases are compared with field measurements. We present measurements concerning the ozone hole over Antarctica and report of some attempts to interpret this phenomenon. The effects of decreasing stratospheric ozone and of the increase of ozone in the troposphere on climate and biosphere are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Brühl, Ch., 1987: Ein effizientes Modell für globale Klima- und Luftzusammensetzungsänderungen durch menschliche Aktivitäten. Doktorarbeit, Mainz.Google Scholar
  2. Callis, L. B.;Natarajan, M., 1986: The Antarctic Ozone Minimum: Relationship to Odd Nitrogen, Odd Chlorine, the Final Warming, and the 11-Year Solar Cycle. J. Geophys. Res.,91, 10771–10796.CrossRefGoogle Scholar
  3. Crutzen, P. J.;Arnold, F., 1986: Nitric acid cloud formation in the cold antarctic stratosphere: a major cause for the springtime ‘ozone hole’. Nature, 324, 651–655.CrossRefGoogle Scholar
  4. Dütsch, H. U., 1971: Photochemistry of atmospheric ozone. Advan. Geophys.15, 219–322.CrossRefGoogle Scholar
  5. Farman, J. C.;Gardiner, B. G.;Shanklin, J. D., 1985: Large Losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–310.CrossRefGoogle Scholar
  6. Gibbs, M. J., 1986, ICF Incorporated: The Economics of Chlorofluorocarbon Production and Use, Conference Paper.Google Scholar
  7. Heicklen, J., 1976: Atmospheric Chemistry. Academic Press.Google Scholar
  8. Hofmann, D. J.;Harder, J. W.;Rolf, S. R.; undRosen, J. M., 1987: Ballonborne Observations of the Temporal Development and Vertical Structure of the Antarctic Ozone Hole in 1986. Nature 326, 59–62.CrossRefGoogle Scholar
  9. Keys, J. G.;Johnston, P. V., 1986: Stratospheric NO2 and O3 in antarctica: Dynamic and chemically controlled variations, Geophys. Res. Lett. 13, 1260–1263.CrossRefGoogle Scholar
  10. Krüger, B. C.; GuiQin W.; Fabian, P., 1987: The antarctic ozone depletion caused by heterogeneous photolysis of halogenated hydrocarbons. Akzeptiert von Geophys. Res. Lett.CrossRefGoogle Scholar
  11. McCormick, M. P.;Trepte, C. R., 1986: SAM II Measurements of Antarctic PSC's and Aerosols. Geophys. Res. Lett.13, 1276–1279.CrossRefGoogle Scholar
  12. McElroy, M. B.;Salawitch, R. J.;Wofsy, S. C.;Logan, J. A., 1986: Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature, 321, 759–762.CrossRefGoogle Scholar
  13. NRC (National Research Council), 1984: Causes and effects of changes in stratospheric ozone. Nat. Academy Press, Washington D.C.Google Scholar
  14. Quinn, T. H.; Wolf, K. A.; Moor, W. E.; Hammitt, J. K.; Chesnutt, T. W.; Sarma, S., 1986: Projected Use, Emissions, and Banks of Potential Ozone Depleting Substances. N-2282-EPA, Jan. 86.Google Scholar
  15. Reinsel, G. C.;Tiao, G. C.;DeLuisi, J. L.;Mateer, C. L.;Miller, A. J.;Frederick, J. E., 1984: Analysis of upper stratospheric Umkehr ozone profile data for trends and the effects of stratospheric aerosols. J. Geopyhs. Res.89, 4833–4840.CrossRefGoogle Scholar
  16. Rowland, F. S.;Molina, M. J., 1975: Chlorofluoromethanes in the environment. Rev. Geopyhs. Space Phys.13, 1–36.CrossRefGoogle Scholar
  17. Sekiguchi, Y., 1986: Antarctic ozone change correlated to the stratospheric temperature field. Geophys. Res. Lett.,13, 1202–1205.CrossRefGoogle Scholar
  18. Solomon, S.;Garcia, R. R.;Rowland, F. S.;Wuebbles, D. J., 1986: On the depletion of Antarctic ozone. Nature321, 755–758.CrossRefGoogle Scholar
  19. Stolarski, R. S.;Krueger, A. J.;Schoeberl, U. R.;McPeters, R. D., Newman, P. A.;Alpert, J. C., 1986: Nimbus 7 satellite measurements of the springtime antarctic ozone decrease. Nature322, 808–814.CrossRefGoogle Scholar
  20. Stolarski, R. S.;Schoeberl, U. R., 1986: Further interpretation of satellite measurements of antarctic total ozone. Geophys. Res. Lett.13, 1210–1212.CrossRefGoogle Scholar
  21. Tung, K. K.;Ko, M. K. W.;Rodriguez, J. M.;Sze, N. D., 1986: Large Antarctic Ozone Variations: A Manifestation of Radiative-Dynamical Processes or Photochemistry? Nature333, 811–814.CrossRefGoogle Scholar
  22. WMO-Report No 16, Atmospheric Ozone 1985, WMO, Genf 1986.Google Scholar

Copyright information

© Verlag Parey 1987

Authors and Affiliations

  • Uta Schmailzl
    • 1
  1. 1.Max-Planck-Institut für ChemieMainz

Personalised recommendations