Skip to main content
Log in

Effect of high-frequency electric fields on optically excited atoms in a magnetoactive plasma. I. π-Component

Влияние высокочастотных электрических полей на оптически возбужденные атомы в магнитоактивной плазме. —I: π-компонента

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The effect of three-dimensional high-frequency turbulent electric fields on the π-component of the allowed 11 S 0−31 P 1 line and the forbidden 11 S 0−31 D 2 line in atomic absorption spectra of a magnetoactive He I plasma is investigated from the coupled equations for the probability amplitudes of atomic states. It is shown that these turbulent electric fields give rise to a spectral shift of the π-component of the allowed line and to satellites about a forbidden line. The calculation reveals that the shift is proportional to the mean square stochastic electric field, and that the ratio of the intensity of the near satellite to that of the far satellite is different from the one obtained by second-order perturbation theory in the absence of a laser field. It is also shown that the spectral positions of the satellite lines are shifted in the presence of the laser field. A discussion is given of the circumstances under which these shifts and satellites should be observed. Observation of these shifts and satellites permits a quantitative determination of the intensity of the stochastic electric field and of the average electron density.

Riassunto

Si studia l'effetto dei campi elettrici turbolenti ad alta frequenza tridimensionali sulla componente π della linea permessa 11 S 0−31 P 1 e della linea proibita 11 S 0−31 D 2 negli spettri di assorbimento atomici di un plasma magnetoattivo di He I per mezzo delle equazioni accoppiate per le ampiezze di probabilità degli stati atomici. Si mostra che questi campi elettrici turbolenti danno origine ad uno spostamento spettrale della componente π della linea permessa e alla formazione di linee satellite attorno alla linea proibita. Il calcolo rivela che lo spostamento è proporzionale al campo elettrico stocastico quadratico medio, e che il rapporto dell'intensità della linea satellite vicina con quella della linea satellite lontana è diverso da quello ottenuto per mezzo della teoria delle perturbazioni di secondo ordine nell'assenza di un campo laser. Si mostra anche che le posizioni spettrali delle linee satellite sono spostate in presenza di un campo laser. Si discutono le circostanze in cui questi spostamenti e linee satelliti si dovrebbero osservare. La loro osservazione permette una determinazione quantitativa dell'intensità del campo elettrico stocastico e della densità media elettronica.

Резюме

Исследуется влияние трехмерных высокочастотных турбулентных электрических полей на π-компоненту разрешенной 11 S 0−31 P 1 линии и запрещенной 11 S 0−31 D 2 линии в атомных спектрах магнитоактивной HeI плазмы, используя связанные уравнения для амплитуд вероятностей для атомных состояний. Показывается, что эти турбулентные электрические поля вызывают спектральный сдвиг π-компоненты разрешенной линии и появление сателлитов вблизи запрещенной линии. Вычисление показывает, что указанный сдвиг пропорционален среднему квадрату стохастического электрического поля и что отношение интенсивности вблизи сателлита к интенсивности вдали от сателлита отличается от величины отношения, полученного во втором порядке теории возмущений в отсутствии лазерного поля. Также показывается, что положения линий сателлитов в спектре сдвигаются при наличии лазерного поля. Проводится обсуждение обстоятельств, при которых эти сдвиги и сателлиты наблюдаются. Наблюдение сдвигов и сателлитов позволяет количественно определить интенсивность стохастического электрического поля и среднюю плотность электронов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Burell andH.-J. Kunze:Phys. Rev. Lett.,29, 1445 (1972).

    Article  ADS  Google Scholar 

  2. M. Baranger andB. Mozer:Phys. Rev.,123, 25 (1961).

    Article  ADS  Google Scholar 

  3. J. Reinheimer:Journ. Quant. Spectr. Radiative Transfer,4, 671 (1964).

    Article  ADS  Google Scholar 

  4. W. S. Cooper andH. Ringler:Phys. Rev.,179, 226 (1969).

    Article  ADS  Google Scholar 

  5. W. W. Hicks, R. A. Hess andW. S. Cooper:Phys. Rev.,5, 490 (1972).

    Article  ADS  Google Scholar 

  6. D. Prosnitz, D. W. Wildman andE. V. George:Phys. Rev.,13, 891 (1976).

    Article  ADS  Google Scholar 

  7. S. H. Kim: unpublished (1975).

  8. H.-J. Kunze, H. R. Griem, A. W. Desilva, G. C. Goldenbaum andI. J. Spalding:Phys. Fluids,12, 2669 (1969).

    Article  ADS  Google Scholar 

  9. Kunze et al. (8), tried to explain this intensity ratio by extending perturbation calculation up to the fourth order. Since fourth-order perturbation calculation corrects only for terms which are small compared to the terms derived by second-order perturbation calculation, their interpretation is invalid.

    Article  ADS  Google Scholar 

  10. L. I. Schiff:Quantum Mechanics (New York, N. Y., 1968).

  11. W. H. Louisell:Radiation and Noise in Quantum Electronics (New York, N. Y., 1964).

  12. E. Schrödinger:Zeits. Phys.,78, 809 (1932).

    Google Scholar 

  13. S. H. Kim andH. E. Wilhelm:Journ. Appl. Phys.,44, 802 (1972).

    Article  ADS  Google Scholar 

  14. J. I. Powell andB. Crasemann:Quantum Mechanics (Reading, Mass., 1962).

  15. P. W. Anderson:Phys. Rev.,76, 647 (1949).

    Article  ADS  Google Scholar 

  16. H. R. Griem:Spectral Line Broadening by Plasmas (New York, N. Y., 1974). This book exclusively uses the line shape function of Anderson, ref. (15)P. W. Anderson:Phys. Rev.,76, 647 (1949). In view of eq. (53)–(58), Griem's considerations there on spectral-line broadening are invalid, sinceGriem treats the spectral-line shape due to the radiation field without taking into account properly the radiation field.

  17. S. H. Kim andH. E. Wilhelm: unpublished (1976).

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Supported in part by the U.S. Office of Naval Research.

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H. Effect of high-frequency electric fields on optically excited atoms in a magnetoactive plasma. I. π-Component. Nuov Cim B 41, 345–364 (1977). https://doi.org/10.1007/BF02740889

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740889

Navigation