Molecular Neurobiology

, Volume 12, Issue 1, pp 73–94 | Cite as

Glutamate and Parkinson’s disease

  • Fabio Blandini
  • Richard H. P. Porter
  • J. Timothy Greenamyre


Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.

Index Entries

Basal ganglia excitotoxicity excitatory amino acids bioenergetics N-methyl-D-aspartate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greenamyre J. T. (1986) The role of glutamate in neurotransmission and in neurologic disease.Arch. Neurol. 43, 1058–1063.PubMedGoogle Scholar
  2. 2.
    Greenamyre J. T. and Porter R. H. P. (1994) Anatomy and physiology of glutamate in the CNS.Neurology 44(Suppl. 8), S7-S13.PubMedGoogle Scholar
  3. 3.
    Fonnum F. (1984) Glutamate: a neurotransmitter in mammalian brain.J. Neurochem. 42, 1–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Kanai Y., Smith C. P., and Hediger M. A. (1993) The elusive transporters with a high affinity for glutamate.Trends Neurosci. 16, 359–370.CrossRefGoogle Scholar
  5. 5.
    Watkins J. C. and Evans R. H. (1981) Excitatory amino acid transmitters.Ann. Rev. Pharmacol. Toxicol. 21, 165–204.CrossRefGoogle Scholar
  6. 6.
    Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain function.Science 258, 597–603.PubMedCrossRefGoogle Scholar
  7. 7.
    McBain C. J. and Mayer M. L. (1994) N-methyl-D-aspartic acid receptor structure and function.Physiol. Rev. 74, 723–760.PubMedGoogle Scholar
  8. 8.
    Johnson J. W. and Ascher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.Nature 325, 529–531.PubMedCrossRefGoogle Scholar
  9. 9.
    Kleckner N. and Dingledine R. (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes.Science 241, 835–837.PubMedCrossRefGoogle Scholar
  10. 10.
    Williams K., Romano C., Dichter M. A., and Molinoff P. B. (1991) Modulation of the NMDA receptor by polyamines.Life Sci. 48, 469–498.PubMedCrossRefGoogle Scholar
  11. 11.
    Westbrook G. L. and Mayer M. L. (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons.Nature 328, 640–643.PubMedCrossRefGoogle Scholar
  12. 12.
    Christine C. W. and Choi D. W. (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.J. Neurosci. 10, 108–116.PubMedGoogle Scholar
  13. 13.
    Traynelis S. F. and Cull-Candy S. G. (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons.Nature 345, 347–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Tang C. M., Dichter M., and Morad M. (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+.Proc. Natl. Acad. Sci. USA 87, 6445–6449.PubMedCrossRefGoogle Scholar
  15. 15.
    Nowak L., Bregestovski P., and Ascher P. (1984) Magnesium gates glutamate-activated channels in mouse central neurones.Nature 307, 462–465.PubMedCrossRefGoogle Scholar
  16. 16.
    Sugihara H., Moriyoshi K., Ishii T., Masu M., and Nakanishi S. (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing.Biochem. Biophys. Res. Commun. 185, 826–832.PubMedCrossRefGoogle Scholar
  17. 17.
    Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnahev N., Sakmann B., and Seeberg P. H. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes.Science 256, 1217–1221.PubMedCrossRefGoogle Scholar
  19. 19.
    Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M., and Mishina M. (1992) Molecular diversity of the NMDA receptor channel.Nature 358, 36–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Meguro H., Mori H., Araki K., Kushiya E., Kutsuwada T., Yamazaki M., Kumanishi T., Arakawa M., Sakimura K., and Mishina M. (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs.Nature 357, 70–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Lodge D. and Johnson K. M. (1990) Noncompetitive excitatory amino acid receptor antagonists.Trends Pharmacol. Sci. 11, 126–133.CrossRefGoogle Scholar
  22. 22.
    Rogawski M. A. (1993) Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines.Trends Pharmacol. Sci. 14, 325–331.PubMedCrossRefGoogle Scholar
  23. 23.
    Porter R. H. P. and Greenamyre J. T. (1995) Regional variations in the pharmacology of NMDA receptor channel blockers: implications for therapeutic potential.J. Neurochemistry 64, 614–623.CrossRefGoogle Scholar
  24. 24.
    Brorson J. R., Bleakman D., Chard P. S., and Miller R. J. (1992) Calcium directly permeates kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured cerebellar Purkinje neurons.Mol. Pharmacol. 41, 603–608.PubMedGoogle Scholar
  25. 25.
    Burnashev N., Khodorva A., Jonas P., Helm P. J., Wisden W., Monyer H., Seeberg P., and Sakmann B. (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells.Science 256, 1566–1570.PubMedCrossRefGoogle Scholar
  26. 26.
    Hollmann M., O’Shea-Greenfield A., Rodgers S. W., and Heinemann S. J. (1989) Cloning by functional expression of a member of the glutamate receptor family.Nature 342, 643–648.PubMedCrossRefGoogle Scholar
  27. 27.
    Keinanen K., Wisden W., Sommer B., Werner P., Herb A., Verdoon A., Sakmann B., and Seeberg P. A. (1990) A family of AMPA-selective glutamate receptors.Science 249, 556–560.PubMedCrossRefGoogle Scholar
  28. 28.
    Hollmann M., Hartley M., and Heinemann S. (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition.Science 252, 851–853.PubMedCrossRefGoogle Scholar
  29. 29.
    Sommer B., Keinanen K., Verdoon T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakmann B., and Seeberg P. H. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.PubMedCrossRefGoogle Scholar
  30. 30.
    Sheardown M. J., Nielson E. O., Hansen A. J., Jacobsen P., and Honoré T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia.Science 247, 571–574.PubMedCrossRefGoogle Scholar
  31. 31.
    Donevan S. D. and Rogawski M. A. (1993) GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses.Neuron 10, 51–59.PubMedCrossRefGoogle Scholar
  32. 32.
    Olney J. W., Ho O. L., and Rhee V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res. 14, 61–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Meldrum B. and Garthwaite J. (1990) Excitatory amino acid neurotoxicity and neurode-generative disease.Trends Pharmacol. Sci. 11, 379–387.PubMedCrossRefGoogle Scholar
  34. 34.
    Orrenius S. and Nicotera P. (1994) The calcium ion and cell death.J. Neural Trans. 43 (S1), 1–11.Google Scholar
  35. 35.
    Phelps P. C., Smith M. W., and Trump B. F. (1989) Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells.Lab. Invest. 60, 630–642.PubMedGoogle Scholar
  36. 36.
    Mirabelli F., Salis A., Vairetti M., Bellomo G., Thor H., and Orrenius S. (1989) Cytoskeletal alterations in human platelets exposed to oxidative stress are mediated by oxidative and Ca2+-dependent mechanisms.Arch. Biochem. Biophys. 270, 478–488.PubMedCrossRefGoogle Scholar
  37. 37.
    Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders.Science 262, 689–695.PubMedCrossRefGoogle Scholar
  38. 38.
    Lazarewicz J. W., Wroblewski J. T., and Costa E. (1990) N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells.J. Neurochem. 55, 1875–1881.PubMedCrossRefGoogle Scholar
  39. 39.
    Dawson V. L., Dawson T. M., London G. D., Bredt D. S., and Snyder S. H. (1991) Nitric acid mediates glutamate neurotoxicity in primary cortical cultures.Proc. Natl. Acad. Sci. USA 88, 6368–6371.PubMedCrossRefGoogle Scholar
  40. 40.
    Beckman J. S., Beckman T. W., Chen J., Marshall A., and Freeman A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci. USA 87, 1620–1624.PubMedCrossRefGoogle Scholar
  41. 41.
    Olney J. W., Sharpe L. G., and Feigin R. D. (1971) Glutamate-induced brain damage in infant primates.J. Neuropath. Exp. Neurol. 31, 464–488.CrossRefGoogle Scholar
  42. 42.
    Reynolds I. J. and Hastings T. G. (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.J. Neurosci. 15, 3318–3327.PubMedGoogle Scholar
  43. 43.
    White R. J. and Reynolds I. J. (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons.J. Neurosci. 15, 1318–1328.PubMedGoogle Scholar
  44. 44.
    Peng T.-I., Sheu S.-S., and Greenamyre J. T. (1995) Visualization of NMDA-induced mitochondrial calcium uptake in striatal neurons using confocal microscopy.Soc. Neurosci. Abstr. 21, 1343.Google Scholar
  45. 45.
    Kure S., Tominaga T., Yoshimoto T., Tada K., and Narisawa K. (1991) Glutamate triggers internucleosomal DNA cleavage in neuronal cells.Biochem. Biophys. Res. Commun. 179, 39–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Sonsalla P. K., Nicklas W. J., and Heikkila R. E. (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.Science 243, 398–400.PubMedCrossRefGoogle Scholar
  47. 47.
    Turski L., Bressler K., Rettig K. J., Löschmann P. A., and Wachtel H. (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.Nature 349, 414–418.PubMedCrossRefGoogle Scholar
  48. 48.
    Benveniste H., Drejer J., Schousboe A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.PubMedCrossRefGoogle Scholar
  49. 49.
    Rothman S. M. and Olney J. W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.PubMedCrossRefGoogle Scholar
  50. 50.
    Glynn I. M. and Karlish S. J. D. (1975) The sodium pump.Ann. Rev. Physiol. 37, 13–55.CrossRefGoogle Scholar
  51. 51.
    Erecínska M. and Dagani F. (1990) Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes.J. Gen. Physiol. 95, 591–616.PubMedCrossRefGoogle Scholar
  52. 52.
    Novelli A., Reilly J. A., Lysko P. G., and Henneberry R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced.Brain Res. 451, 205–212.PubMedCrossRefGoogle Scholar
  53. 53.
    Albin R. L. and Greenamyre J. T. (1992) Alternative excitotoxic hypotheses.Neurology 42, 733–738.PubMedGoogle Scholar
  54. 54.
    Beal M. F., Hyman B. T., and Koroshetz W. (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?Trends Neurosci. 16, 125–131.PubMedCrossRefGoogle Scholar
  55. 55.
    Novelli A., Reilly J. A., Lysko P. G., and Henneberry R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced.Brain Res. 451, 205–212.PubMedCrossRefGoogle Scholar
  56. 56.
    Henneberry R. C. (1989) The role of neuronal energy in neurotoxicity of excitatory amino acids.Neurobiol. Aging 10, 611–613.PubMedCrossRefGoogle Scholar
  57. 57.
    Zeevalk G. D. and Nicklas W. J. (1990) Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina.J. Pharmacol. Exp. Ther. 253, 1285–1292.PubMedGoogle Scholar
  58. 58.
    Beal M. F., Swartz K. J., Hyman B. T., Storey E., Finn S. F., and Koroshetz W. (1991) Amino-oxyacetic acid results in excitotoxin lesions by a novel indirect mechanism.J. Neurochem. 57, 1068–1073.PubMedCrossRefGoogle Scholar
  59. 59.
    Beal M. F., Brouillet E., Jenkins B., Henshaw R., Rosen B., and Hyman B. T. (1993) Agedependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate.J. Neurochem. 61, 1147–1150.PubMedCrossRefGoogle Scholar
  60. 60.
    Greene J. G., Porter R. H. P., Eller R. V., and Greenamyre J. T. (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum.J. Neurochem. 61, 1151–1154.PubMedCrossRefGoogle Scholar
  61. 61.
    Greene J. G. and Greenamyre J. T. (1995) Exacerbation of NMDA, AMPA, and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate.J. Neurochem. 64, 2332–2338.PubMedCrossRefGoogle Scholar
  62. 62.
    Beal M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?Ann. Neurol. 31, 119–130.PubMedCrossRefGoogle Scholar
  63. 63.
    Langston J. W., Ballard P. A., Tetrud J. W., and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science 219, 979, 980.PubMedCrossRefGoogle Scholar
  64. 64.
    Kopin I. J. and Markey S. P. (1988) MPTP toxicity: implications for research in Parkinson’s disease.Ann. Rev. Neurosci. 11, 81–96.PubMedCrossRefGoogle Scholar
  65. 65.
    DeLong M. R. (1990) Primate models of movement disorders of basal ganglia origin.Trends Neurosci. 13, 281–285.PubMedCrossRefGoogle Scholar
  66. 66.
    Chiba K., Trevor A., Castagnoli N. Jr. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase.Biochem. Biophys. Res. Commun. 120, 574–578.PubMedCrossRefGoogle Scholar
  67. 67.
    Heikkila R. E., Manzino L., Cabbat F. S., and Duvoisin R. C. (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors.Nature 311, 467–469.PubMedCrossRefGoogle Scholar
  68. 68.
    Langston J. W., Irwin I., Langston E. B., and Forno L. S. (1984) Pargyline prevents MPTP-induced parkinsonism in primates.Science 225, 1480–1482.PubMedCrossRefGoogle Scholar
  69. 69.
    Salach J. I., Singer T. P., Castagnoli N. Jr., and Trevor A. (1984) Oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine oxidases A and B and suicide inactivation of the enzymes by MPTP.Biochem. Biophys. Res. Commun. 125, 831–835.PubMedCrossRefGoogle Scholar
  70. 70.
    Javitch J. A., D’Amato R. J., Strittmatter S. M., and Snyder S. H. (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.Proc. Natl. Acad. Sci. USA 82, 2173–2177.PubMedCrossRefGoogle Scholar
  71. 71.
    Ramsay R. R., Dadgar J., Trevor A., and Singer T. P. (1986) Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP.Life Sci. 39, 581–588.PubMedCrossRefGoogle Scholar
  72. 72.
    Nicklas W. J., Vyas I., and Heikkila R. E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.Life Sci. 36, 2503–2508.PubMedCrossRefGoogle Scholar
  73. 73.
    Ramsay R. R., Krueger M. J., Youngster S. K., Gluck M. R., Casida J. E., and Singer T. P. (1991) Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase.J. Neurochem. 56, 1184–1190.PubMedCrossRefGoogle Scholar
  74. 74.
    Greenamyre J. T., Higgins D. S., and Eller R. V. (1992) Quantitative autoradiography of dihydrorotenone binding to complex I of the electron transport chain.J. Neurochem. 59, 746–749.PubMedCrossRefGoogle Scholar
  75. 75.
    Greenamyre J. T. and Higgins D. S. (1993) Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) with the rotenone binding site of complex I of the electron transport chain.Soc. Neurosci. Abstr. 19, 407.Google Scholar
  76. 76.
    Cesura A. M., Ritter A., Picotti G. B., and Da Prada M. (1987) Uptake, release, and subcellular localization of 1-methyl-4-phenylpyridinium in blood platelets.J. Neurochem. 49, 138–145.PubMedCrossRefGoogle Scholar
  77. 77.
    Buckman T. D., Chang R., Sutphin M. S., and Eiduson S. (1988) Interaction of 1-methyl-4-phenylpyridinium ion with human platelets.Biochem. Biophys. Res. Commun. 151, 897–904.PubMedCrossRefGoogle Scholar
  78. 78.
    Da Prada M., Cesura A. M., Launay J. M., and Richards J. G. (1988) Platelets as a model for neurones?Experientia 44, 115–126.PubMedCrossRefGoogle Scholar
  79. 79.
    Blandini F. and Greenamyre J. T. (1995) Assay of [3H]dihydrorotenone binding to complex I in intact human platelets.Anal. Biochem. 230, 16–19.PubMedCrossRefGoogle Scholar
  80. 80.
    Hartley A., Stone J. M., Heron C., Cooper J. M. and Schapira A. H. (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease.J. Neurochem. 63, 1987–1990.PubMedCrossRefGoogle Scholar
  81. 81.
    Hatefi Y. (1985) The mitochondrial electron transport and oxidative phosphorylation system.Ann. Rev. Biochem. 54, 1015–1069.PubMedCrossRefGoogle Scholar
  82. 82.
    Chomyn A., Cleeter M. W. J., Ragan C. I., Riley M., Doolittle R. F., and Attardi G. (1986) URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit.Science 234, 614–618.PubMedCrossRefGoogle Scholar
  83. 83.
    Singer T. P. and Ramsay R. R. (1994) The reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase.Biochim. Biophys. Acta 1187, 198–202.PubMedCrossRefGoogle Scholar
  84. 84.
    Mizuno Y., Suzuki K., and Ohta S. (1990) Postmortem changes in mitochondrial respiratory enzymes in the brain and a preliminary observation in Parkinson’s disease.J. Neurol. Sci. 96, 49–57.PubMedCrossRefGoogle Scholar
  85. 85.
    Schapira A. H. V., Cooper J. M., Dexter D., Clark J. B., Jenner P., and Marsden C. D. (1990) Mitochondrial complex I deficiency in Parkinson’s disease.J. Neurochem. 54, 823–827.PubMedCrossRefGoogle Scholar
  86. 86.
    Janetzky B., Hauck S., Youdim M. B. H., Riederer P., Jellinger K., Pantucek F., Zöchling R., Boissl K. W., and Reichmann H. (1994) Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease.Neurosci. Lett. 169, 126–128.PubMedCrossRefGoogle Scholar
  87. 87.
    Mizuno Y., Ikebe S., Hattori N., Kondo T., Tanaka M., and Ozawa T. (1993) Mitochondrial energy crisis in Parkinson’s disease, inAdvances in Neurology (Narabayashi H., Nagatsu T., Yanagisawa N., and Mizuno Y., eds.), Raven, New York, pp. 282–287.Google Scholar
  88. 88.
    Mecocci P., MacGarvey U., Kaufman A. E., Koontz D., Shoffner J. M., Wallace D. C., and Beal M. F. (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain.Ann. Neurol. 34, 609–616.PubMedCrossRefGoogle Scholar
  89. 89.
    Allen K. L., Almeida A., Bates T. E., and Clark J. B. (1995) Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia.J. Neurochem. 64, 2222–2229.PubMedCrossRefGoogle Scholar
  90. 90.
    Cleeter M. W., Cooper J. M., and Schapira A. H. (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement.J. Neurochem. 58, 786–789.PubMedCrossRefGoogle Scholar
  91. 91.
    Jenner P. (1994) Oxidative damage in neurodegenerative disease.Lancet 344, 796–798.PubMedCrossRefGoogle Scholar
  92. 92.
    Chiueh C. C., Miyake H., and Peng M. (1993) Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism, inAdvances in Neurology (Narabayashi H., Nagatsu T., Yanagisawa N., and Mizuno Y., eds.), Raven, New York, pp. 251–258.Google Scholar
  93. 93.
    Youdim M. B. H., Ben-Shachar, D., Eshel G., Finberg J. P., and Riederer P. (1993) The neurotoxicity of iron and nitric oxide. Relevance to the etiology of Parkinson’s disease, inAdvances in Neurology (Narabayashi H., Nagatsu T., Yanagisawa N., and Mizuno Y., eds.), Raven, New York, pp. 259–266.Google Scholar
  94. 94.
    Ben-Shachar D., Eshel G., Finberg J. P. M., and Youdim M. B. H. (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons.J. Neurochem. 56, 1441–1444.PubMedCrossRefGoogle Scholar
  95. 95.
    Dexter D. Y., Wells F. R., Agid F. R., Agid Y., Lees A. J., Jenner P., and Marsden C. D. (1987) Increased nigral iron content in postmortem parkinsonian brain.Lancet 2, 1219, 1220.PubMedCrossRefGoogle Scholar
  96. 96.
    Sofic E., Paulus W., Jellinger K., Riederer P., and Youdim M. B. H. (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.J. Neurochem. 56, 978–982.PubMedCrossRefGoogle Scholar
  97. 97.
    Dexter D. T., Carayon A., Vidailhet M., Ruberg M., Agid F., Agid Y., Lees A. J., Wells F. R., Jenner P., and Marsden C. D. (1990) Decreased ferritin levels in brain in Parkinson’s disease.J. Neurochem. 5, 16–20.CrossRefGoogle Scholar
  98. 98.
    Riederer P., Sofic E., Rausch E. D., Schmidt B., Reynolds G. P., Ellinger K., and Youdim M. B. H. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains.J. Neurochem. 52, 515–520.PubMedCrossRefGoogle Scholar
  99. 99.
    Jellinger K. A., Kienzl E., Rumpelmaier G., Paulus W., Riederer P., Stachelberger H., Youdim M. B. H., and Ben-Sacher D. (1993) The level of iron and ferritin in substantia nigra in Parkinson’s disease, inAdvances in Neurology (Narabayashi H., Nagatsu T., Yanagisawa N., and Mizuno Y., eds.), Raven, New York, pp. 267–272.Google Scholar
  100. 100.
    Dexter D. T., Carayon A., Javoy-Agid F., Agid Y., Wells F. R., Daniel S. E., Lees A. J., Jenner P., and Marsden C. D. (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia.Brain 114, 1953–1975.PubMedCrossRefGoogle Scholar
  101. 101.
    Dexter D. T., Jenner P., Schapira A. H. V., and Marsden C. D. (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia.Ann. Neurol. 32, S94-S100.PubMedCrossRefGoogle Scholar
  102. 102.
    Dedman D. J., Treffry A., Candy J. M., Taylor G. A. A., Morris C. M., Bloxham C. A., Perry R. H., Edwardson J. A., and Harrison P. M. (1992) Iron and aluminium in relation to brain ferritin in normal individuals and Alzheimer’sdisease and chronic renal-dialysis patients.Biochem. J. 287, 509–514.PubMedGoogle Scholar
  103. 103.
    Fridovich I. (1989) Superoxide dismutases. An adaptation to a paramagnetic gas.J. Biol. Chem. 264, 7761–7764.PubMedGoogle Scholar
  104. 104.
    Nakazono K., Watanabe N., Matsuno K., Sasaki J., Sato T., and Inous M. (1991) Does superoxide underlie the pathogenesis of hypertension?Proc. Natl. Acad. Sci. USA 88, 10,045–10,048.CrossRefGoogle Scholar
  105. 105.
    Perry T. L., Godin D. V., and Hansen S. (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency?Neurosci. Lett. 33, 305–310.PubMedCrossRefGoogle Scholar
  106. 106.
    Perry T. L. and Yong V. W. (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients.Neurosci. Lett. 67, 269–274.PubMedCrossRefGoogle Scholar
  107. 107.
    Sofic E., Lange K. W., Jellinger K., and Riederer P. (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease.Neurosci. Lett. 142, 128–130.PubMedCrossRefGoogle Scholar
  108. 108.
    Saggu H., Cooksey J., Dexter D., Wells F. R., Lees A., Jenner P., and Marsden C. D. (1989) A selective increase in the particulate superoxide dismutase activity in parkinsonian substantia nigra.J. Neurochem. 53, 692–697.PubMedCrossRefGoogle Scholar
  109. 109.
    Marttila R. J., Lorentz H., and Rinne U. K. (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease. Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus.J. Neurol. Sci. 86, 321–331.PubMedCrossRefGoogle Scholar
  110. 110.
    Mithöfer K., Sandy M. S., Smith M. T., and DiMonte D. (1992) Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes.Arch. Biochem. Biophys. 295, 132–136.PubMedCrossRefGoogle Scholar
  111. 111.
    Albin R. L., Young A. B., and Penney J. B. (1989) The functional anatomy of basal ganglia disorders.Trends Neurosci. 12, 366–375.PubMedCrossRefGoogle Scholar
  112. 112.
    McGeorge A. J. and Faull R. L. M. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat.Neuroscience 29, 503–537.PubMedCrossRefGoogle Scholar
  113. 113.
    Young A. B., Bromberg M. B., and Penney J. B. (1981) Decreased glutamate uptake in subcortical areas deafferented by sensorimotor cortical ablation in the cat.J. Neurosci. 1, 241–249.PubMedGoogle Scholar
  114. 114.
    Moore R. Y., Bhatnagar R. K., and Heller A. (1971) Anatomical and chemical studies of a nigro-neostriatal projection in the cat.Brain Res. 30, 119–135.PubMedCrossRefGoogle Scholar
  115. 115.
    Gerfen C. R. (1992) The neostriatal mosaic: multiple levels of compartmental organization.Trends Neurosci. 15, 133–139.PubMedCrossRefGoogle Scholar
  116. 116.
    Greenamyre J. T. (1993) Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease.J. Neural Trans. 91, 255–269.CrossRefGoogle Scholar
  117. 117.
    Strange P. G. (1993) Dopamine receptors in the basal ganglia: relevance to Parkinson’s disease.Mov. Disord. 8, 263–270.PubMedCrossRefGoogle Scholar
  118. 118.
    Anderson J. I., Chase T. N., and Engber T. M. (1992) Differential effect of subthalamic nucleus ablation on dopamine D1 and D2 agonist-induced rotation in 6-hydroxydopamine-lesioned rats.Brain Res. 588, 307–310.PubMedCrossRefGoogle Scholar
  119. 119.
    Kita H. and Kitai S. T. (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method.J. Comp. Neurol. 260, 435–452.PubMedCrossRefGoogle Scholar
  120. 120.
    Parent A. and Smith Y. (1987) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods.Brain Res. 436, 296–310.PubMedCrossRefGoogle Scholar
  121. 121.
    Robledo P. and Feger J. (1990) Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data.Brain Res. 518, 47–54.PubMedCrossRefGoogle Scholar
  122. 122.
    Smith Y. and Parent A. (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity.Brain Res. 453, 353–356.PubMedCrossRefGoogle Scholar
  123. 123.
    Aldes L. D. (1988) Thalamic connectivity of rat somatic motor cortex.Brain Res. Bull. 20, 338–348.CrossRefGoogle Scholar
  124. 124.
    Girault J. A., Savaki H. E., Desban M., Glowinski, J., and Besson M. J. (1985) Bilateral cerebral metabolic alterations following lesion of the ventromedial thalamic nucleus: mapping by the14C-deoxyglucose method in conscious rats.J. Comp. Neurol. 231, 137–149.PubMedCrossRefGoogle Scholar
  125. 125.
    Sommer B., Keinanen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakmann B., and Seeburg P. H. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.PubMedCrossRefGoogle Scholar
  126. 126.
    Moriyoshi K., Masu M., Ishi T., Shigemoto R., Mizuno N., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37.PubMedCrossRefGoogle Scholar
  127. 127.
    Albin R. L., Makowiec R. L., Hollingsworth Z., Dure L. S., Penney J. B., and Young A. B. (1992) Excitatory amino acid binding sites in the basal ganglia of the rat: a quantitative autoradiographic study.Neuroscience 46, 35–48.PubMedCrossRefGoogle Scholar
  128. 128.
    Sakurai S. Y., Penney J. B., and Young A. B. (1993) Regionally distinct N-methyl-D-aspartate receptors distinguished by quantitative autoradiography of [3H]MK-801 binding in rat brain.J. Neurochem. 60, 1344–1353.PubMedCrossRefGoogle Scholar
  129. 129.
    Tallaksen-Greene S. J., Wiley R. G., and Albin R. L. (1992) Localization of striatal excitatory amino acid binding site subtypes to striatonigral projection neurons.Brain Res. 594, 165–170.PubMedCrossRefGoogle Scholar
  130. 130.
    Landwehrmeyer G. B., Standaert D. G., Testa C. M., Penney J. B., and Young A. B. (1995) NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum.J. Neurosci. 15, 5297–5307.PubMedGoogle Scholar
  131. 131.
    Tallaksen-Greene S. J. and Albin R. L. (1994) Localization of AMPA-selective excitatory amino acid receptor subunits in identified populations of striatal neurons.Neuroscience 61, 509–519.PubMedCrossRefGoogle Scholar
  132. 132.
    Yamamoto B. K. and Cooperman M. A. (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations.J. Neurosci. 14, 4159–4166.PubMedGoogle Scholar
  133. 133.
    Calabresi P., Mercuri N. B., Sancessario G., and Bernardi G. (1993) Electrophysiology of dopamine-denervated striatal neurons.Brain 116, 433–452.PubMedCrossRefGoogle Scholar
  134. 134.
    Anderson J. J., Kuo S., and Chase T. N. (1994) Endogenous excitatory amino acids tonically stimulate striatal acetylcholine release through NMDA but not AMPA receptors.Neurosci. Lett. 176, 264–268.PubMedCrossRefGoogle Scholar
  135. 135.
    Albin A. L., Aldrich J. W., Young A. B., and Gilman S. (1989) Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine-like immunoreactivity.Brain res. 491, 185–188.PubMedCrossRefGoogle Scholar
  136. 136.
    Brotchie J. M. and Crossman A. R. (1991) D-[3H] aspartate and [14C]GABA uptake in the basal ganglia of rats following lesions in the subthalamic region suggest a role for excitatory amino acid but not GABA-mediated transmission in subthalamic nucleus efferents.Exp. Neurol. 113, 171–181.PubMedCrossRefGoogle Scholar
  137. 137.
    Robledo P. and Feger J. (1990) Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data.Brain Res. 518, 47–54.PubMedCrossRefGoogle Scholar
  138. 138.
    Tzagournissakis M., Dermon C. R., and Savaki H. E. (1994) Functional metabolic mapping of the rat brain during unilateral electrical stimulation of the subthalamic nucleus.J. Cereb. Blood Flow Metab. 14, 132–144.PubMedGoogle Scholar
  139. 139.
    Blandini F. and Greenamyre J. T. (1995) Effect of subthalamic nucleus lesion on mitochondrial enzyme activity in rat basal ganglia.Brain Res. 669, 59–66.PubMedCrossRefGoogle Scholar
  140. 140.
    Blandini F., Porter R. H. P., and Greenamyre J. T. (1995) Autoradiographic study of mitochondrial complex I and glutamate receptors in the basal ganglia of rats after unilateral subthalamic lesion.Neurosci. Lett. 186, 99–102.PubMedCrossRefGoogle Scholar
  141. 141.
    Soltis R. P., Anderson L. A., Walters J. R., and Kelland M. D. (1994) A role for non-NMDA excitatory amino acid receptors in regulating the basal activity of rat globus pallidus neurons and their activation by the subthalamic nucleus.Brain Res. 666, 21–30.PubMedCrossRefGoogle Scholar
  142. 142.
    Porter R. H., Greene J. G., Higgins D. S., and Greenamyre J. T. (1994) Polysynaptic regulation of glutamate receptors and mitochondrial enzyme activities in the basal ganglia of rats with unilateral dopamine depletion.J. Neurosci. 14, 7192–7199.PubMedGoogle Scholar
  143. 143.
    Klockgether T. and Turski L. (1993) Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia.Ann. Neurol. 34, 585–593.PubMedCrossRefGoogle Scholar
  144. 144.
    Miller W. C. and DeLong M. R. (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, inThe Basal Ganglia II (Carpenter M. B. and Jayrman A., eds.), Plenum, New York, pp. 415–427.Google Scholar
  145. 145.
    Mitchell I. J., Clarke C. E., Boyce S., Robertson R. G., Peggs D. E., Sambrook M. A., and Crossman A. R. (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Neuroscience 32, 213–226.PubMedCrossRefGoogle Scholar
  146. 146.
    Aziz T. Z., Peggs D., Sambrook M. A., and Crossman A. R. (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate.Mov. Disord. 6, 288–292.PubMedCrossRefGoogle Scholar
  147. 147.
    Benazzouz A., Gross C. H., Feger J., Boraud T., and Bioulac B. (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys.Eur. J. Neurosci. 5, 382–389.PubMedCrossRefGoogle Scholar
  148. 148.
    Bergman H., Wichmann T., and DeLong M. R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus.Science 249, 1436–1438.PubMedCrossRefGoogle Scholar
  149. 149.
    Turski L., Bressler K., Rettig K. J., Loschmann P. A., and Wachtel H. (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.Nature 349, 414–418.PubMedCrossRefGoogle Scholar
  150. 150.
    Sonsalla P. K., Nicklas W. J., and Heikkila R. E. (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.Science 243, 398–400.PubMedCrossRefGoogle Scholar
  151. 151.
    Greene J. G. and Greenamyre J. T. (1995) Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate.J. Neurochem. 64, 430–436.PubMedCrossRefGoogle Scholar
  152. 152.
    Uitti R. J., Rajput A. H., Ahlskog J. E., Offord K. P., Ho M. M., Prasad M., Rajput A., and Basran P. (1993) Amantadine treatment is an independent predictor of improved survival in parkinsonism.Canad. J. Neurol. Sci. 20, 235.Google Scholar
  153. 153.
    Limousin P., Pollak P., Benazzouz A., Hoffman D., Le Bas J. F., Broussolle E., Perret J. E., and Benabid A. L. (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation.Lancet 345, 91–95.PubMedCrossRefGoogle Scholar
  154. 154.
    Brotchie J. M., Mitchell I. J., Sambrook M. A., and Crossman A. R. (1991) Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate.Mov. Disord. 6, 133–138.PubMedCrossRefGoogle Scholar
  155. 155.
    Klockgether T., Turski L., Honoré T., Zhang Z., Gash D. M., Kurlan R., and Greenamyre J. T. (1991) The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoaminedepleted rats and MPTP-treated monkeys.Ann. Neurol. 30, 717–723.PubMedCrossRefGoogle Scholar
  156. 156.
    Klockgether T. and Turski L. (1990) NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats.Ann. Neurol. 28, 539–546.PubMedCrossRefGoogle Scholar
  157. 157.
    Carlsson M. and Carlsson A. (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice.J. Neural Trans. 75, 221–226.CrossRefGoogle Scholar
  158. 158.
    Schmidt W. J. and Bubser M. (1989) Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats.Phamacol. Biochem. Behav. 32, 621–623.CrossRefGoogle Scholar
  159. 159.
    Löschmann P. A., Lange K. A., Kunow M., Rettig K.-J., Jähnig P., Honoré T., Turski L., Wachtel H., Jenner P., and Marsden C. D. (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-dopa in models of Parkinson's disease.J. Neural Trans. [PD-Sect.] 3, 203–213.CrossRefGoogle Scholar
  160. 160.
    Greenamyre J. T., Eller R. V., Zhang Z., Ovadia A., Kurlan R., and Gash D. M. (1994) Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson’s disease.Ann. Neurol. 35, 655–661.PubMedCrossRefGoogle Scholar
  161. 161.
    Kornhuber J., Bormann J., Hubers M., Rusche K., and Riederer P. (1991) Effects of thel-aminoadamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study.Eur. J. Pharmacol. 206, 297–300.PubMedCrossRefGoogle Scholar
  162. 162.
    Kornhuber J., Bormann J., Retz W., Hubers M., and Riederer P. (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex.Eur. J. Pharmacol. 166, 589–590.PubMedCrossRefGoogle Scholar
  163. 163.
    Klockgether T., Jacobsen P., Löschmann P.A., and Turski L. (1993) The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist.J. Neural Trans. 5, 101–106.CrossRefGoogle Scholar
  164. 164.
    Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., Jenner P., and Marsden C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease.J. Neurochem. 52, 381–389.PubMedCrossRefGoogle Scholar
  165. 165.
    Dexter D. T., Holley A. E., Flitter W. D., Slater T. F., Wells F. R., Daniel S. E., Lees A. J., Jenner P., and Marsden C. D. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study.Mov. Disord. 9, 92–97.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Fabio Blandini
    • 1
  • Richard H. P. Porter
    • 2
  • J. Timothy Greenamyre
    • 3
    • 4
  1. 1.Neurological Institute “C. Mondino,”University of PaviaPaviaItaly
  2. 2.University Department of Clinical NeuropathologyOxfordUK
  3. 3.Departments of Neurology and PharmacologyAtlanta
  4. 4.Yerkes Regional Primate Research CenterEmory University School of MedicineAtlanta

Personalised recommendations