Skip to main content
Log in

The effect of methamphetamine on the mRNA level for 14·3·3 ⥈ chain in the human cultured cells

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

14·3·3 protein, a brain-specific protein, is an activator of tyrosine and tryptophan hydroxylases, key enzymes for biosynthesis of dopamine and serotonin. In this article, we describe cloning of cDNA for human brain 14·3·3 ν chain and expression of 14·3·3 ν chain mRNA in some human cultured cells. The cloned cDNA is 1730 bp long and contains 191 bp of a 5′-noncoding region, the complete 738 bp of coding region, and 801 bp of a 3′-noncoding region, containing three polyadenylation signals. This cDNA encoded a polypeptide of 246 amino acids (M, 28,196). Furthermore, usingin situ hybridization histochemistry, the expression of mRNA for this protein was examined in the rat central nervous system.In situ hybridization histochemistry indicated that 14·3·3 ⥈ chain mRNA is detected not only in the monoamine-synthetic neurons, but also in other neurons in the discrete nuclei, which synthesize neither cathecholamine nor serotonin. Northern blot analysis demonstrated that the addition of methamphetamine into the cultured medium increased the mRNA level for 14·3·3 ⥈ chain in U-251 cells, but did not increase that of GFAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aviv H. and Leder P. (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose.Proc. Natl. Acad. Sci. USA 69, 1408–1413.

    Article  PubMed  CAS  Google Scholar 

  • Benton W. D. and Davis R. W. (1977) Screening λgt recombinant clones by hybridization to single plaquesin situ.Science 196, 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin J. M., Przybyla A. E., MacDonald R. J., and Rutter W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 18, 294–299.

    Article  Google Scholar 

  • Gubler U. and Hoffman B. G. (1983) A simple and very efficient method generating cDNA libraries.Gene 25, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Isobe T., Okuyama T., Yamauchi T., and Fujisawa H. (1987) Brain 14·3·3 protein is an activator protein that activates-tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II.FEBS Lett. 219, 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Isobe T., Okuyama T., Takahashi N., Araki K., Kuwano R., and Takahashi Y. (1988) Molecular cloning of cDNA coding for brainspecific 14·3·3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.Proc. Natl. Acad. Sci. USA 85, 7084–7088.

    Article  PubMed  CAS  Google Scholar 

  • Isobe T., Ichimura T., Sunaya T., Okuyama T., Takahashi N., Kuwano R., and Takahashi Y. (1991) Distinct forms of protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.J. Mol. Biol. 217, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Kedzierski W., Aguila-Masilla N., Kozlowski G. P., and Porter J. C. (1994) Expression of tyrosine hydroxylase gene in cultured hypothalamic cells: roles of protein kinase A and C.J. Neurochem. 62, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Maxam A. M. and Gilbert W. (1980) Sequencing end-labeled with DNA base-specific chemical cleavages.Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  • Miyake E. (1979) Establishment of a human oligodendroglial cell line.Acta Neuropathol. 46, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Moore B. W. and Perez V. J. (1967) Specific acidic proteins of the nervous system, inPhysiological and Biological Aspects of Nervous Integration (Carlson F. D., ed.), Prentice-Hall, Englewood Cliffs, NJ, pp. 343–359.

    Google Scholar 

  • Ponten J. and Westermark B. (1978) Properties of human malignant glioma cells in vitro.Med. Biol. 56, 184–193.

    PubMed  CAS  Google Scholar 

  • Sanger F., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y. and Akabane Y. (1960) Brain hexokinase activity.Arch. Gen. Psychiatr. 3, 674–681.

    PubMed  CAS  Google Scholar 

  • Thomas P. S. (1980) Hybridization of denatured RNA and small DNA fragments transfered to nitrocellulose.Proc. Natl. Acad. Sci. USA 77, 5201–5205.

    Article  PubMed  CAS  Google Scholar 

  • Toker A., Ellis C. A., Sellers L. A., and Aitken A. (1990) Protein kinase C inhibitor proteins: purification from sheep brain and sequences similarity to lipocortins and 14·3·3 protein.Eur. J. Biochem. 191, 422–429.

    Article  Google Scholar 

  • Watanabe M., Isobe T., Okuyama T., Ichimura T., Kuwano R., Takahashi Y., and Kondo H. (1991) Molecular cloning of cDNA to rat 14·3·3 ν chain polypeptide and the neuronal expression of the mRNA in the central nervous system.Mol. Brain Res. 10, 151–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muratake, T., Hayashi, S., Ichimura, Y. et al. The effect of methamphetamine on the mRNA level for 14·3·3 ⥈ chain in the human cultured cells. Mol Neurobiol 11, 223–230 (1995). https://doi.org/10.1007/BF02740697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740697

Index Entries

Navigation