Skip to main content
Log in

The use of toxicokinetics for the safety assessment of drugs acting in the brain

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pharmacological and toxicological studies undertaken on drugs that affect the brain are frequently performed in disparate species under various experimental conditions, at doses often greatly in excess of those expected to be administered to humans, and the findings are extrapolated implicitly or explicitly with scant regard to differences in the biodisposition of the drugs. Such considerations are necessary since:

  1. 1.

    Species;

  2. 2.

    Strain;

  3. 3.

    Gender;

  4. 4.

    Route;

  5. 5.

    Dose;

  6. 6.

    Frequency and time of administration;

  7. 7.

    Temperature;

  8. 8.

    Coadministration of drugs; and

  9. 9.

    Surgical manipulation

are but some of the factors that have been shown to influence the kinetics and metabolism of drugs. This article, using MDMA and other phenylethylamines as examples, provides evidence for the need to measure the exoosure of the drugs and their active metabolites in blood and brain (toxicokinetics) in order that conclusions based only on dynamic, biochemical, or histological evidence are more pertinent. Further, the combined use of toxicokinetic-dynamic modeling can lead to a better appreciation of the mechanisms involved and a more useful approach to the calculation of safety margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S. F., Change L. W., and Slikker W. Jr. (1991) Biogenic amines as markers for neurotoxicity.Biomed. Environ. Sci. 4, 207–216.

    PubMed  CAS  Google Scholar 

  • Ames M. M., Nelson S. D., Lovenberg W., and Sasame H. A. (1977) Metabolic activation of parachloroamphetamine to a chemically reactive metabolite.Commun. Psychopharmacol. 1, 455–460.

    PubMed  CAS  Google Scholar 

  • Barnes D. G. and Dourson M. (1988) Reference dose (RfD) description and use in health risk assessments.Regul. Toxicol. Pharmacol. 8, 471–486.

    Article  PubMed  CAS  Google Scholar 

  • Berger U. V., Grazanna R., and Molliver M. E. (1992) The neurotoxic effects ofp-chloroamphetamines in rat brain are blocked by prior depletion of serotonin.Brain Res. 578, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom R. F., Peyton A. L., and Lemgerger L. (1992) Quantisation and mechanism of the fluoxetine and tricyclic antidepressant interaction.Clin. Pharmacol. Ther. 51, 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Boyce S., Kelly E., Reavill C., Jenner P., and Marsen C. D. (1984) Repeated administration of N-methyl-4-phenyl-1,2,5,6-tetra-hydropyridine to rats is not toxic to striatal dopamine neurons.Biochem. Pharmacol. 33, 1747–1752.

    Article  PubMed  CAS  Google Scholar 

  • Boxembaum H. (1982) Interspecies scaling, allometry, physiological time and the ground plan of pharmacokinetics.J. Pharm. Biop. 10, 201–227.

    Article  Google Scholar 

  • Boxembaum H. and Fertig J. (1984) Scaling of antipyrine intrinsic clearance of unbound drug in 15 mammalian species.Eur. J. Drug Metab. Pharmacokinet. 9, 117–183.

    Article  Google Scholar 

  • Britto M. R. and Wedlund P. J. (1992) Cytochrome P-450 in the brain. Potential evolutionary and therapeutic relevance of localization of drug-metabolizing enzymes.Drug Metab. and Disposition 20(3), 446–450.

    CAS  Google Scholar 

  • Brösen K. and Skjelbo E. (1991) Fluoxetine and norfluoxetine are potent inhibitors of P45011D6.Br. J. Clin. Pharmacol. 32, 136, 137.

    PubMed  Google Scholar 

  • Büch U., Altmayer P., Iserverg S. C., and Büch H. P. (1991) Increase of thiopental concentrations in rat tissues due to anaesthesia with isoflurane.Methods Find. Exp. Clin. Pharmacol. 13, 687–691.

    PubMed  Google Scholar 

  • Caccia S. and Garattini S. (1992) Pharmacokinetic and pharmacodynamic significance of antide-pressant drug metabolites.Pharmacol. Res. 26(4), 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Caccia S., Dagnino G., Garattini S., Madonna R., and Zanini M. G. (1981) Kinetics of fenfluramine isomers in the rat.Eur. J. Drug Metab. Pharmacokinet. 6, 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Caccia S., Ballabio M., Guiso G., Rocchetti M., and Garattini S. (1982) Species differences in the kinetics and metabolism of fenfluramine isomers.Arch. Int. Pharmacodyn. 258, 15–28.

    PubMed  CAS  Google Scholar 

  • Caccia S., Cappi M., Fracasso C., and Garattini S. (1990) Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat.Psychopharmacology 100, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Caccia S., Fracasso C., Garattini S., Guiso G., and Sarati S. (1992) Effects of short- and long-term administration of fluoxetine on the monoamine content of rat brain.Neuropharmacology 31(4), 343–347.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell J., Dring L. G., and Williams R. T. (1972) Metabolism of [14C]methamphetamine in man, the guinea pig and the rat.Biochem. J. 129, 11, 12.

    PubMed  CAS  Google Scholar 

  • Campbell D. B. (1978) Pharmacokinetics of amphetamine and fenfluramine after therapeutic dosage and overdosage. PhD. Thesis. University of London, Poisons Unit, Guy’s Hospital, London, SE1.

    Google Scholar 

  • Campbell D. B. (1990a) Stereoselectivity in clinical pharmacokinetics and drug development.Eur. J. Drug Metab. Pharmacokinet. 15(2), 109–125.

    Article  PubMed  CAS  Google Scholar 

  • Campbell D. B. (1990b) The use of kinetic-dynamic interactions in the evaluation of drugs.Psychopharmacology 100, 433–450.

    Article  PubMed  CAS  Google Scholar 

  • Campbell D. B. (1994a) Can allometric interspecies scaling be used to predict human kinetics?Drug Inf. J. 28, 235–245.

    Google Scholar 

  • Campbell D. B. (1994b) Are interspecies comparisons in the toxicity of centrally acting drugs valid without brain concentrations?—A commentary.Neurochem. Int. 26(2), 103–110.

    Article  Google Scholar 

  • Campbell D. B. (1994c) Sizing up the problem of exposure extrapolation: new directions in allometric scaling, inToxicology of Industrial Compounds (Waechter F. and Thomas H., eds.), Taylor and Francis, in press.

  • Campbell D. B., Ings R. M. J., Gordon B. H. G., Zaczek R., and De Souza E. (1991) The use of kinetic dynamic models in the interpretation of the effects of fenfluramine on 5HT turnover. Abstract presented at Serotonin Club, Birmingham.

  • Campbell D. B. and Jochemsen R. (1994) Nonclinical pharmacokinetics and toxico-kinetics, inInternational Pharmaceutical Product Registration, Aspects of Quality, Safety, and Efficacy—Chemistry, Pharmacy and Manufacturing (Cartwright A. C. and Matthews B. R., eds.), Ellis Horwood, Chichester, pp. 560–627.

    Google Scholar 

  • Campbell D. B., Richards R. P., Caccia S., and Garattini S. (1986) Stereoselective metabolism and the fate of fenfluramine in animals and humans, inDevelopment of Drugs and Modern Medicines (Gorrod J. W., Gibson G. G., and Mitchard M., eds.), Ellis Horwood, Chichester, pp. 298–311.

    Google Scholar 

  • Gass W. A. and Zahniser N. R. (1993) Cocaine levels in situation and nucleus acumens. Augmentation following challenge injection in rats with-drawn from repeated cocaine administration.Neurosci. Lett. 152(1–2), 177–180.

    Google Scholar 

  • Cho A. K., Hiramatsu M., DiStefano E. W., Chang A. J., and Jenden D. J. (1990) Stereochemical differences in the metabolism of 3,4,methylenedioxy methamphetamine in vivo and in vitro: a pharmacokinetic analysis.Drug Metab. Dispos. 18, 686.

    PubMed  CAS  Google Scholar 

  • Cho A. K., Hiramatsu M., Kumagai Y., and Patel N. (1993) Pharmacokinetic approach to the study of drug action and toxicity in assessing neurotoxicity of drugs of abuse.Natural Institute on Drug Abuse Res. Monograph Series, vol. 136 (Erinof F. L., ed.), pp. 213–215.

    CAS  Google Scholar 

  • Chu M., Hiramatsu M., and Cho A. K. (1992) In vivo formation of catecholamines from methylene-dioxyamphetamine (MDA) and-methamphetamine (MDMA).FASEB J. 6(4), abstract 3668, p A1569.

    Google Scholar 

  • Clarke B. and Smith D. A. (1984) Pharmacokinetics and toxicity testing.CRC Critical Rev. Toxicol. 12, 343–385.

    Google Scholar 

  • Commins D. L., Vosmer G., Virus R. M., Woolverton W. L., Schuster C. R., and Seiden L. S. (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain.J. Pharmacol. Exp. Ther. 241(1), 338–345.

    PubMed  CAS  Google Scholar 

  • Cook C. E., Jeffcoat A. R., Sadler B. M., Hill J. M., Voyksner R. D., Pugh D. E., White W. R., and Perez-Reyes M. (1992) Pharmacokinetics of oral methamphetamine and effects of repeated daily dosing in humans.Drug Metab. Dispos. Biol. Fate Chem. 20, 856–862.

    PubMed  CAS  Google Scholar 

  • Crump K. S. (1984) A new method for determining available daily intakes.Fundam. Appl. Toxicol. 4, 854–871.

    Article  PubMed  CAS  Google Scholar 

  • Dedrick R. L. (1986) Interspecies scaling of regional drug delivery.J. Pharm. Sci. 75, 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  • Dourson M. L. and Derosh C. T. (1991) The use of uncertainty factors in establishing safe levels of exposure, inStatistics in Toxicology (Krewski D. and Franklin C., eds.), Grodon & Breach Science, New York, pp. 613–627.

    Google Scholar 

  • Dring L. G., Smith R. L., and Williams R. T. (1970) The metabolic fate of amphetamine in man and other species.Biochem. J. 116, 425–435.

    PubMed  CAS  Google Scholar 

  • Elayan I., Gibb J. W., Hanson G. R., Foltz R. L., Keang Lim H., and Johnson M. (1992) Long-term alteration in the central monoaminergic systems of the rat by 2,4,5-trihydroxyamphetamine but not by 2-hydroxy-4,5-methylenedioxymethamphetamine or 2-hydroxy-4,5-methylenedioxy amphetamine.Eur. J. Pharmacol. 221, 281–288.

    Article  PubMed  CAS  Google Scholar 

  • Federal Register (1993) EPA draft report: principles of neurotoxicity risk assessment.58, 41,556–41,599.

    Google Scholar 

  • Fitzgerald R. L., Blanke R. V., Rosecrans J. A., and Glennon R. A. (1989) Stereochemistry of the metabolism of MDMA to MDA.Life Sci. 45, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Fleisher M. R. and Campbell D. B. (1969) Fenfluramine overdosage.Lancet 2, 1306,1307.

    PubMed  CAS  Google Scholar 

  • Fuller R. W. and Perry K. W. (1992) Comparison of fluoxetine and norfluoxetine enantiomers as inhibitors of hexobarbitone metabolism in miceJ. Pharm. Pharmacol. 44, 1041,1042.

    PubMed  CAS  Google Scholar 

  • Fuller R. W., Snoddy H. D., Krushinski J. H., and Robertson D. W. (1992) Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo.Neuropharmacology 31, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • Fuller R. W. and Snoddy H. D. (1993) Drug concentrations in mouse brain at pharmacological active doses of fluoxetine enantiomers.Biochem. Pharm. 45, 2355–2358.

    Article  PubMed  CAS  Google Scholar 

  • Fuller R. W., Snoddy H. D., and Perry K. W. (1988) Metabolism of fenfluramine to norfenfluramine in guinea-pigs.J. Pharm. Pharmacol. 40, 439–441.

    PubMed  CAS  Google Scholar 

  • Garattini S., Bizzi A., Caccia S., Mennini T., and Samanin R. (1988) Progress in assessing the role of serotonin in the control of food intake.Clin. Pharmacol. 11(Suppl. 1) S8-S32.

    CAS  Google Scholar 

  • Gardier A. M., Lepoul E., Trouvin J. H., Chanut E., Dessalles M. C., and Jacquot C. (1993) Changes in dopamine metabolism in rat forebrain regions after cessation of long-term fluoxetine treatment: relationship with brain concentrations of fluoxetine and norfluoxetine.Life Sci. 54, 51–56.

    Google Scholar 

  • Gaylor D. and Slikker W. Jr. (1992) Risk assessment for neurotoxicants, inNeurotoxicology (Tilson H. and Mitchell C., eds.), Raven, New York, pp. 331–343.

    Google Scholar 

  • Gobbi M., Presti M. L., Mancini L., DeSimoni M. G., and Mennini T. (1993) Decreased serotonin uptake carriers after chronic d-fenfluramine: neurotoxicity or down-regulation? Poster presented at the 23rdAnnual Meeting Society for Neuroscience, Washington, DC, November 7–12. P772.17.

  • Gordon B. (1991) Results of analysis of clinical samples from 12 months of fenfluramine multicentre study (INDEX)Internal Servier Report, INF/91-5614-010.

  • Gordon B. H., Pallot D. J., Mir A., Ings R. M. J., Evrard Y., and Campbell D. B. (1986) Kinetics of almitrine bismesylate and its metabolites in the carotid body and other tissues of the rat, inChemoreceptors in Respiratory Control (Ribero J. H. and Pallot D. J., eds), Croom Helm, London, pp. 394–407.

    Google Scholar 

  • Hashimoto K. and Goromaru T. (1990) Reduction of in vivo binding of [3H]paroxetine in mouse brain by 3,4-methylenedioxymethamphetamine.Neuropharmacology 29(7), 633–639.

    Article  PubMed  CAS  Google Scholar 

  • Herr F. (1989)Grundlagen der Pharmakologie. Jena Veb. p. 271.

  • Hiramatsu M., DiStefano E. W., and Cho A. K. (1989a) Stereochemical differences in the in vivo and in vitro metabolism of MDMA.Fed Am. Soc. Exp. Biol. J. 3, A1035.

    Google Scholar 

  • Hiramatsu M. and Cho A. K. (1989b) Rapid formation and disappearance of the MDMA metabolite 3,4-dihydroxymethamphetamine by rat liver microscomes.Neurosciences Abs. 15, 1185.

    Google Scholar 

  • Hiramatsu M., Kumagai Y., Unger S. E., and Cho A. K. (1990) Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct.J. Pharmacol. Exp. Ther. 254(2), 521–527.

    PubMed  CAS  Google Scholar 

  • Hiramatsu M., DiStefano E., Chang A. S., and Cho A. K. (1991) A pharmacokinetic analysis of 3,4-methylenedioxymethamphetamine effects on monoamine concentrations in brain dialysates.Eur. J. Pharmacol. 204, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Holmes I. and Gordon B. (1989) Analysis of over-dosage post-mortem samples for dl-fenfluramine and norfenfluramine.International Servier Report no. 89-768-002.

  • Hunsinger R. N., Kibbe A. H., and Wilson M. C. (1985) The effect of previous d-amphetamine treatment on the disposition and lethality of fenfluramine in the rat.Toxicol. Appl. Pharm. 79, 236–245.

    Article  CAS  Google Scholar 

  • ICH2 (1993) International Conference on Harmonisation Safety topic S3: toxicokinetics note for guidance on toxicokinetics. A guidance for assessing systemic exposure in toxicity studies, Draft 10; EFPIA, Brussels.

    Google Scholar 

  • Johannessen J. N., Chiueh C. C., Burns R. S., and Markey S. P. (1985) Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects.Life Sci. 36(3), 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Johnson M., Letter A. A., Merchant K., Hanson G. R., and Gibb J. W. (1988) Effects of 3,4-methylenedioxy amphetamine and 3,4-methylenedioxy methamphetamine isomers on central serotonergic, dopaminergic and nigral neurotensin systems of the rat.J. Pharmacol. Exp. Therap. 244, 977–982.

    CAS  Google Scholar 

  • Johnson M., Elayan I., Handon G. R., Foltz R. L., Gibbs J. W., and Lim H. K. (1992) Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, 2 metabolites of 3,4, methylene dioxy methamphetamine on central serotonergic and dopaminergic systems.J. Pharmacol. Exp. Ther. 261, 447.

    PubMed  CAS  Google Scholar 

  • Jori A., Caccia S., and Dolfine E. (1978) Tolerance to anorectic drugs, inCentral Mechanisms of Anorectic Drugs (Garattini S. and Samanin R., eds.), Raven, New York. pp. 83–110.

    Google Scholar 

  • Karson C. N., Newton J. E. O., Mohanakrishnan P., Sprigg J., and Komoroski A. (1992) Fluoxetine and trifluoperazine in human brain: a19F-nuclear magnetic resonance spectroscopy study.Psychiatry Res.: Neuroimaging 45, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Kato R. (1974) Sex related differences in drug metabolism.Drug Metab. Rev. 3, 1–32.

    PubMed  CAS  Google Scholar 

  • Kimmel C. A. (1990) Quantitative approaches to human risk assessment for non cancer health effects.Neurotoxicology 11, 189–198.

    PubMed  CAS  Google Scholar 

  • Kleven M. S., Schuster C. R., and Seiden L. S. (1988) Effect of depletion of brain serotonin by repeated fenfluramine on neurochemical and anorectic effects of acute fenfluramine.J. Pharmacol. Exp. Ther. 246(3), 822–828.

    PubMed  CAS  Google Scholar 

  • Kuhn C. M., Schanberg S. M., and Breese G. R. (1978) Metabolism of amphetamine by rat brain tissue.Biochem. Pharmacol. 27, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai Y., Schmitz D. A., and Cho A. K. (1992a) Aromatic hydroxylation of methylenedioxybenzene (MDB) and methylenedioxymethamphetamine (MDMA) by rabbit liver microsomes.Xenobiotica 22(4), 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai Y., Lin L. Y., and Cho A. K. (1992b) Cytochrome P450 isozymes responsible for the metabolic activation of methylenedioxymethamphetamine (MDMA) in rat.FASEB J. 6(4), abstract 3652, pA1567.

    Google Scholar 

  • Kumagai Y., Lin L. Y., Philpot R. M., Yamada H., Oguri K., Yoshimura H., and Cho A. K. (1992c) Regiochemical differences in cytochrome P450 isozymes responsible for the oxidation of methylenedioxyphenyl groups by rabbit liver.Mol. Pharmacol. 42(4), 695–702.

    PubMed  CAS  Google Scholar 

  • Lapka R. (1991) Pharmacokinetics and the brain entry of alaptide, a novel nootropic agent in mice rats and rabbits.J. Pharm. Pharmacol. 43, 874–876.

    PubMed  CAS  Google Scholar 

  • Lévi F., Metzger G., and Deprés-Brummer P. (1994) Implications of biological rhythms for toxicology.Drug. Inform. J. 28, 195–202.

    Google Scholar 

  • Lim H. K. and Foltz R. L. (1988) In vivo and in vitro metabolism of 3,4-(methylenedioxy)methamphetamine in the rat: identification of metabolites using an ion trap detector.Chem. Res. Toxicol. 1, 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Lim H. K. and Foltz R. L. (1989) Identification of metabolites of 3,4-(methylenedioxy) methamphetamine in human urine.Chem. Res. Toxicol. 2(3), 142,143.

    Article  PubMed  CAS  Google Scholar 

  • Lim H. K. and Foltz R. L. (1991a) In vivo formation of aromatic hydroxylated metabolites of 3,4-(methylenedioxy) methamphetamine in the rat: identification by ion trap tandem mass spectrometric (MS/MS and MS/MS/MS) techniques.Biol. Mass Spectrom 20, 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Lim H. K. and Foltz R. L. (1991b) Ion trap tandem mass spectrometric evidence for the metabolism of 3,4-methylenedioxy methamphetamine to the potent neurotoxin 2,4,5-trihydroxymethamphetamine and the 2,4,5-trihydroxyamphetamineChem. Res. Toxicol. 4, 626–632.

    Article  PubMed  CAS  Google Scholar 

  • Lim H. K., Su Z., and Foltz R. L. (1993) Stereoselective disposition—Enantioselective quantita tion of 3,4-(methylenedioxy) methamphetamine and 3 of its metabolites by gas chromatography/election capture negative ion chemical ionization mass spectrometry.Biol. Mass Spectrom. 22(7), 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Lin L. Y., Kumagai Y., and Cho A. K. (1992) Demethylenation of methylenedioxy-amphetamine (MDA) and-methamphetamine (MDMA) by rat brain microsomes; enzymatic and chemical reactions.FASEB J. 6(4), abstract 3651, pA1566.

    Google Scholar 

  • mansuy D. (1989) Reactive intermediates and interaction with biological systems, inProceedings of 5th International Congress of Toxicology. Brighton. (Volas G., Sims J., Sullivan F., and Turner P., eds.), Taylor and Francis, London, pp. 37–45.

    Google Scholar 

  • Marchant N. C., Breen M. A., Wallace D., Bass S., Taylor A. R., Ings R. M. J., and Campbell D. B. (1992) Comparative biodisposition and metabolism of14C-(+)-fenfluramine in mouse rat, dog and man.Xenobiotica 12(11), 1251–1266.

    Article  Google Scholar 

  • McCann U. D. and Ricaurte G. A. (1991) Major metabolites of (+) 3,4-methylenedioxyamphetamine (MDA) do not mediate its toxic effects on the brain serotonin neurons.Brain Res. 545, 279.

    Article  PubMed  CAS  Google Scholar 

  • Mennini T., Bizzi A., Caccia S., et al. (1991) Comparative studies on the anorectic, activity of fenfluramine in mice, rats and guinea pigs.Naunyn-Schmiedebergs Arch. Pharmacol. 343, 483–490.

    PubMed  CAS  Google Scholar 

  • Michel R. E., Rege A. B., and George W. J. (1993) High pressure liquid chromatography/electrochemical detection method for monitoring MDA and MDMA in whole blood and other biological tissues.J. Neurosci. Methods 50(1), 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Miller D. B. and O’Callaghan J. P. (1993) The interaction of MK801 with the amphetamine analogues d-methamphetamine (D-meth), 3-4-methylene-dioxymethamphetamine (D-MDMA) ord-fenfluramine (D-fen)—normal damage and neural protection markers of neuronal injury and degeneration (Series).Ann. NY Acad. Sci. 679, 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Miller K. J., Anderholm D. C., and Ames M. M. (1986) Metabolic activation of the serotonergic neurotoxin para-chloroamphetamine to chemically reactive intermediates by hepatic and brain microsomal preparationsBiochem. Pharmacol. 35, 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  • Molliver M. E., O’Hearn E., Battaglia G., and De Souza E. B. (1986) Direct intracerebral administration of MDA and MDMA does not produce serotonin neurotoxicity.Soc. Neuroscience Abstract 12, 1234.

    Google Scholar 

  • Mordenti J. (1986) Man versus beast: pharmacokinetic scaling in mammals.J. Pharm. Sci. 75, 1028–1040.

    Article  PubMed  CAS  Google Scholar 

  • Murray M. and Reidy G. F. (1990) Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents.Pharmacol. Rev. 42(2), 85–101.

    PubMed  CAS  Google Scholar 

  • O’Callaghan J. and Miller D. (1993) Neurotoxicity profiles of substituted amphetamines in the C57/B16/J2.Neurosci. Abstract 686.6.

  • Paalzow L. K. (1984) Integrated pharmacokinetic/pharmacodynamic modelling of drugs acting on the CNS.Drug Metab. Rev. 15, 383–400.

    PubMed  Google Scholar 

  • Pardridge W. M. and Connor J. D. (1973) Saturable transport of amphetamine across the blood-brain-barrier.Experientia 29, 302–304.

    Article  PubMed  CAS  Google Scholar 

  • Paris J. M. and Cunningham K. A. (1991) Lack of neurotoxicity after intraraphe microinjections of MDMA (Ecstacy).NIDA Res. Monogr. 105, 333,334.

    Google Scholar 

  • Pashko S. and Vogel W. H. (1980) Factors influencing the plasma levels of amphetamine and its metabolites in catheterized rats.Biochem. Pharmacol. 29, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Patel N., Kumagi Y., Unger S. E., Fukuto J. M., and Cho A. K. (1991) Transformation of dopamine and alpha-methyldopamine by NG 108-15 cells: formation of thio adducts.Chem Res. Toxicol. 4, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Rebec G. V. and Segal D. S. (1980) Apparent tolerance to some aspects of amphetamine stereotypy with long term treatment.Pharmacol. Biochem. Behav. 13, 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Renshaw P. F., Guimaraes A. R., Fava M., Rosenbaum J. F., Pearlman J. D., Flood J. G., Puopolo P. R., Clancy K., and Gonzalez R. G. (1992) Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration.Am. J. Psychiatry 149(11), November, 1592.

    PubMed  CAS  Google Scholar 

  • Ricaurte G. A. (1989) Studies of MDMA-induced neurotoxicity in nonhuman primates: a basis for evaluating long-term effects in humans.NIDA Res. Monogr. 94, 306–322.

    PubMed  CAS  Google Scholar 

  • Robertson D. W., Krushinski J. H., Fuller R. W., and Leander J. D. (1988) Absolute configurations and pharmacological activities of the optical isomers of fluoxetine: a selective serotonin—uptake incubator.J. Med. Chem. 31, 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  • Rose S., Hindmarsh J. G., Collins P., Campbell D. B., and Jenner P. (1993) Escalating doses of fenfluramine prevent the long-lasting 5-hydroxytryptamine depletion in the rat. Society forneurosci. Abstracts 19, P1893 Abstract 772.9.

  • Schmidt C. J. (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine.J. Pharmacol. Exp. Ther. 240(1), 1–7.

    PubMed  CAS  Google Scholar 

  • Schmidt C. J. and Taylor V. L. (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine.Biochem. Pharmacol. 36, 4095–4102.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C. J., Gehlert D. R., Peat M. A., Sonsalla P. K., Hanson G. R., Wamsley J. K., and Gibb J. W. (1985) Studies on the mechanism of tolerance to methamphetamine.Brain Res. 343, 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C. J., Levin J. A., and Lovenberg W. (1987) In vitro and in vivo neurochemical effects of methylenedioxymethamphetamine on striatal monoaminergic systems in the rat brain.Biochem. Pharmacol. 36(5), 747–755.

    Article  PubMed  CAS  Google Scholar 

  • Seiden L. S. and Vosmer G. (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine.Pharm. Biochem. Behav. 21, 29–31.

    Article  CAS  Google Scholar 

  • Sherman A., Gal E. M., Fuller R. W., and Molloy B. B. (1975) Effects of intraventricular p-chloroamphetamine and its analogues on cerebral 5HT.Neuropharmacology 14, 733–737.

    Article  PubMed  CAS  Google Scholar 

  • Sindrup S. H., Brösen K., Gram L. F. Hallas J., Skjelbo E., Allen A., and Allen G. D. (1992) Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism.Clin. Pharm. Ther. 51(3), 288–295.

    Article  CAS  Google Scholar 

  • Slikker W. Jr. (1991) Biomarkers of neurotoxicity: an overview. Recent advances on biomarker research.Biomed. Environ. Sci. 4, 192–196.

    PubMed  Google Scholar 

  • Smith D. A. (1993) Integration of animal pharmacokinetic and pharmacodynamic data in drug safety assessment.Eur. J. Drug Metabol. Pharmacokinet. 181, 31–39.

    CAS  Google Scholar 

  • Steele T. D., Nichols D. E., and Yim G. K. W. (1987) Stereochemical effects of 3,4-methylenedioxyamphetamine (MDMA) and related amphetamine derivatives on inhibition of uptake of [3-H]-monoamines into synaptosomes from different regions of rat brain.Biochem. Pharmacol. 36, 2297–2303.

    Article  PubMed  CAS  Google Scholar 

  • Stekerke H. J., Schmith H. E., Bush J. A., and Sanders-Bush E. (1975) Correlation between brain levels and biochemical effects of the optical isomers of p-chloroamphetamine.J. Pharm. Exp. Ther. 193, 835–844.

    Google Scholar 

  • Stevens J. C. and Wrighton S. A. (1993) Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochromes P450.J. Pharmacol. Exp. Ther. 266, 964–977.

    PubMed  CAS  Google Scholar 

  • Stone D. M., Hanson G. R., and Gibb J. W. (1987) Differences in the central serotonergic effects of methylenedioxymethamphetamine (MDMA) in mice and rats.Neuropharmacology 26(11), 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Stone D. M., Johnson M., Hanson G. R., and Gibb J. W. (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxyamphetamine.J. Pharmacol. Exp. Ther. 247, 79–87.

    PubMed  CAS  Google Scholar 

  • Stone D. M., Johnson M., Hanson G. R., and Gibb J. W. (1989) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulphydryl sites.Eur. J. Pharmacol. 17, 93–97.

    Google Scholar 

  • Tucker G. T. and Lennard M. S. (1990) Enantiomer specific pharmacokinetics.Pharmacol. Ther. 45, 309–329.

    Article  PubMed  CAS  Google Scholar 

  • Tucker G. T., Lennard M. S. Ellis S. W., Woods H. F., Cho A. K., Lin L. Y., Hiratsuka A., Schmitz D. A., and Chu T. Y. (1994) The demethylenetation of methylenedioxymethamphetamine (“ecstacy”) by debrisoquine hydroxylase (CYP 2D6).Biochem. Pharmacol. 47, 1151–1156.

    Article  PubMed  CAS  Google Scholar 

  • Wong D. T., Bymaster F. P., Reid L. R., Fuller R. W., and Perry K. W. (1985) Inhibition of serotonin uptake by optical isomers of fluoxetine.Drug Dev. Res. 6, 397–403.

    Article  CAS  Google Scholar 

  • Wong D. T., Fuller R. W., and Robertson D. W. (1990) Fluoxetine and its two enantiomers as selective serotonin uptake inhibitors.Acta Pharm. Nord 2, 171–180.

    PubMed  CAS  Google Scholar 

  • Yeh S. Y. and Hsu F. L. (1991) The neurochemical and stimulatory effects of putative metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine in rats.Pharmacol. Biochem. Behav. 39, 787–790.

    Article  PubMed  CAS  Google Scholar 

  • York, D. A. and Maclean R. (1992) Are fenfluramine/adrenalectomy interactions on feeding and body weight modulated by 5-HT?Int. J. Obesity Abstracts Intern. Conf. Obesity in Holland.

  • Zaczek R., Battaglia G., Culp S., Appel N. M., Contrera J. F., and De Souza E. M. (1990) Effects of repeated fenfluramine administration on the indices of monoamine function in rat brain: pharmacokinetic dose-response, regional specificity and time course data.J. Pharm. Exp. Ther. 253, 104–112.

    CAS  Google Scholar 

  • Zaphiropoulos P. G., Mode A., Norstedt G., and Gustafsson J. (1989) A regulation of sexual differentiation in drug and steroid metabolism.TIPS 10, 149–153.

    PubMed  CAS  Google Scholar 

  • Zhao Z., Castagnoli N., Ricaurte G. A., Steele T., and Martello M. (1992) Synthesis and evaluation of purative metabolites of the serotonergic neurotoxin 2-(methyl amino)-1-[3-4(methylenedioxy) phenyl)] propane [(methylenedioxymethamphetamic)].Chem. Res. Toxicol. 5, 89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruce Campbell, D. The use of toxicokinetics for the safety assessment of drugs acting in the brain. Mol Neurobiol 11, 193–216 (1995). https://doi.org/10.1007/BF02740695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740695

Index Entries

Navigation