Skip to main content
Log in

Effects of prenatal cocaine exposure in the prefrontal cortex of the rat

A morphometric evaluation

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This work was undertaken in order to assess the organization of the prelimbic area of the medial prefrontal cortex of rats exposed prenatally to cocaine. Pregnant Wistar rats were assigned to the following groups:

  1. 1.

    Cocaine—60 mg/kg body wt/d sc, from gestational days 8–22; 0131

  2. 2.

    Saline;

  3. 3.

    Pair-fed; and

  4. 4.

    Nonmanipulated.

Male offspring were perfused on postnatal days 14 and 30. Six brains per group and per age were embedded in celloidin to calculate the volumes of the prelimbic area; sections from the other six brains were embedded in resin and processed for electron microscopy. Using semithin sections (2 μm) of layers II–III and V–VI, the following parameters were calculated:

  1. 1.

    The fraction of the neuropil occupied by neurons (VV);

  2. 2.

    The packing (NA) density; and

  3. 3.

    The numerical (NV) density.

Qualitative alterations consisted of dispersed profiles of degenerated neurons and dendrites in the medial prefrontal cortex. No significant differences were found in the gross morphometric parameters when the cocaine group was compared with the other groups. A high interanimal variation was shown in the prelimbic volumes of postnatal day (PND) 14 cocaine-treated rats, and a decrease in volumes was detected at PND30. Although there are some alterations in the main afferent cortical target area for dopaminergic input, its gross morphometric parameters do not seem to be sufficiently affected to account for the behavioral alterations referred to as being dependent on this brain region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari H. M. and Azmitia E. C. (1992) Increased tyrosine hydroxylase immunoreactivity in the rat following prenatal cocaine exposure.Dev. Brain Res. 66, 277–281.

    Article  CAS  Google Scholar 

  • Akbari H. M., Kramer H. K., Whitaker-Azmitia P. M., Spear L. P., and Azmitia E. C. (1992) Prenatal cocaine exposure disrupts the development of the serotonergic system.Brain Res. 572, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Beck T., Lutz B., Thole U., and Wree A. (1993) Assessing chronic brain damage by quantification of regional volumes in postischemic rat brains.Brain Res. 605, 280–286.

    Article  PubMed  CAS  Google Scholar 

  • Braendgaard H. and Gundersen H. J. G. (1986) The impact of recent stereological advances on quantitative studies of the nervous system.J. Neurosci. Methods 18, 39–78.

    Article  PubMed  CAS  Google Scholar 

  • Brutkowski S. (1965) Functions of the prefrontal cortex in animals.Physiol. Rev. 45, 721–746.

    PubMed  CAS  Google Scholar 

  • Cadete-Leite A., Alves M. C., Tavares M. A., and Paula-Barbosa M. M. (1990) Effects of chronic alcohol intake and withdrawal on the prefrontal neurons and synapses.Alcohol 7, 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Chasnoff I. J., Burns W. J., Schnoll S. H., and Burns K. A. (1985) Cocaine use in pregnancy.N. Engl. J. Med. 313, 666–669.

    Article  PubMed  CAS  Google Scholar 

  • Chen W. J. A., Andersen K. H., and West J. R. (1993) Cocaine exposure during the rat brain growth spurt: studies of neonatal survival, somatic growth and brain development.Neurotoxicol. Teratol. 15, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Church M. W., Dintcheff B., and Gessner P. K. (1988) Dose dependent consequences of cocaine on pregnancy outcome in the Long Evans rat.Neurotoxicol. Teratol. 10, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Church M. W. and Overbeck G. W. (1990) Prenatal cocaine exposure in the Long Evans rat: II. Dosedependent effects on offspring behavior.Neurotoxicol. Teratol. 12, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Church M. W., Overbeck G. W., and Andrzejczak A. L. (1990) Prenatal cocaine exposure in the Long Evans rat: I. Dose-dependent effects on gestation, mortality and postnatal maturation.Neurotoxicol. Teratol. 12, 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Conover W. J. (1980)Practical Nonparametric Statistics, 2nd ed. Wiley, New York.

    Google Scholar 

  • Deutch A. Y. and Roth R. H. (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system.Prog. Brain Res. 85, 357–393.

    Google Scholar 

  • Dow-Edwards D. L. (1989) Long-term neurochemical and neurobehavioral consequences of cocaine use during pregnancy, inPrenatal Abuse of Licit and Illicit Drugs (Hutchings D. E., ed.),Ann. NY Acad. Sci. 562, 208–289.

  • Galloway M. P. (1988) Neurochemical interactions of cocaine with dopaminergic systems.TIPS 9, 451–454.

    PubMed  CAS  Google Scholar 

  • Gingras J. L., Weese-Mayer D. E., Hume R. F. Jr., and O’Donell K. J. (1992) Cocaine and development: mechanisms of fetal toxicity and neonatal consequences of prenatal cocaine exposure.Early Hum. Dev. 31, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Glick S. D. and Hinds P. A. (1984) Sex differences in sensitization to cocaine- induced rotation.Eur. J. Pharmacol. 59, 119–121.

    Article  Google Scholar 

  • Gundersen H. J. G. (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect.J. Microsc. 111, 219–223.

    Google Scholar 

  • Heyser C. J. and Spear L. P. (1993) A comparison of body weight gain and intake of food and water in pregnant and non-pregnant rats receiving cocaine.Teratology 47, 461.

    Google Scholar 

  • Heyser C. J., Miller J. S., Spear N. E., and Spear L. P. (1992) Prenatal exposure to cocaine-induced conditioned place preference in the rats.Neurotoxicol. Teratol. 14, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Horner C. H., O’Regan M., and Arbuthnott E. (1991) Neural plasticity of the hippocampal (CA1) pyramidal cell—quantitative changes in spine density following handling and injection for drug testing.J. Anat. 174, 229–238.

    PubMed  CAS  Google Scholar 

  • Johns J. M., Means L. W., Means M. J., and McMillen B. A. (1992) Prenatal exposure to cocaine. I: Effects on gestation, development and activity in Sprague-Dawley rats.Neurotoxicol. Teratol. 14, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Karoum F., Suddath R. L., and Wyatt R. J. (1990) Chronic cocaine and rat brain cathecholamines: long-term reduction in hypothalamic and frontal cortex dopamine metabolism.Eur. J. Pharmacol. 186, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Madeira M. D., Pereira A., Cadete-Leite A., and Paula-Barbosa M. M. (1990) Estimates of volumes and pyramidal cell numbers in the prelimbic subarea of the prefrontal cortex in experimental hypothyroid rats.J. Anat. 171, 41–56.

    PubMed  CAS  Google Scholar 

  • Maisonneuve I. M., Keller R. W., and Glick S. D. (1990) Similar effects of d-amphetamine and cocaine on extracellular dopamine levels in medial prefrontal cortex of rats.Brain Res. 535, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Meyer J. S. and Dupont S. A. (1993) Prenatal cocaine administration stimulates fetal brain tyrosine hydroxylase activity.Brain Res. 608, 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B. and Bunney B. J. (1989) Differential effect of cocaine on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens: comparison to amphetamine.Synapse 4, 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Neuspiel D. R. and Hamel S. C. (1991) Cocaine and infant behavior—Review article.Dev. Behav. Pediat. 12, 55–64.

    CAS  Google Scholar 

  • Palay S. L. and Chan-Palay V. (1974)Cerebellar Cortex—Cytology and Organization. Springer-Verlag, Berlin.

    Google Scholar 

  • Scalzo F. M., Ali S. F., Frambes N. A., and Spear L. P. (1990) Weanling rats exposed prenatally to cocaine exhibit an increase in striatal D2 binding associated with an increase in ligand affinity.Pharmacol. Biochem. Behav. 37, 371–373.

    Article  PubMed  CAS  Google Scholar 

  • Silva-Araújo A., Salgado-Borges J., and Tavares M. A. (1991) Morphological changes in the optic nerve after chronic exposure of neonatal rats to cocaine and amphetamine.Ophthalmic Res. 23, 295–302.

    Article  PubMed  Google Scholar 

  • Silva-Araújo A., Salgado-Borges J., Cardoso V., Silva M. C., Castro-Correia J., and Tavares M. A. (1993) Changes in the retinal ganglion cell layer and optic nerve of rats gestationally exposed to cocaine.Exp. Eye Res. 56, 199–206.

    Article  PubMed  Google Scholar 

  • Spear L. P., Kirstein C. L., and Frambes N. A. (1989) Cocaine effects on the developing CNS: behavioral, psychopharmacological and neurochemical studies, inPrenatal Abuse of Licit and Illicit Drugs (Hutchings D. E., ed.),Ann. NY Acad. Sci. 562, 290–307.

  • Sterio D. C. (1984) The unbiased estimation of number and sizes of arbitrary particles using the dissector.J. Microsc. 134, 127–136.

    PubMed  CAS  Google Scholar 

  • Tavares M. A. and Silva M. C. (1993) Body weight gain and hippocampal volumes of rats exposed neonatally to psychostimulants.Brain Res. 619, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Thibault L. (1992) Influence of feeding paradigm in rats on temporal pattern of: II—Brain serotonergic and catecholaminergic systems.Chronobiol. Int. 9, 19–34.

    PubMed  CAS  Google Scholar 

  • Van Eden C. G., Hoorneman E. D. M., Buijs R. M., Matthijssen M. A. H., Geffard M., and Uylings H. B. M. (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level.Neuroscience 22, 849–862.

    Article  PubMed  Google Scholar 

  • Van Eden C. G. and Uylings H. B. M. (1985a) Cytoarchitecture development of the prefrontal cortex in the rat.J. Comp. Neurol. 241, 253–267.

    Article  PubMed  Google Scholar 

  • Van Eden C. G. and Yulings H. B. M. (1985b) Postnatal volumetric development of the prefrontal cortex in the rat.J. Comp. Neurol. 241, 268–274.

    Article  PubMed  Google Scholar 

  • Venero J. L., Herrera A. J., Machado A., and Cano J. (1992) Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet.Br. J. Nutr. 68, 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Volpe J. J. (1992) Effect of cocaine use on the fetus.N. Engl. J. Med. 327, 399–407.

    Article  PubMed  CAS  Google Scholar 

  • Weibel E. R. (1979)Stereological Methods, Practical Methods for Biological Morphometry, vol. 1, Academic, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xavier, M.R., Tavares, M.A., Machado, J.D. et al. Effects of prenatal cocaine exposure in the prefrontal cortex of the rat. Mol Neurobiol 11, 99–110 (1995). https://doi.org/10.1007/BF02740688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740688

Index Entries

Navigation