Skip to main content
Log in

Behavioral sensitization and tolerance to cocaine and the occupation of dopamine receptors by dopamine

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Data from the authors’ laboratory on the neural substrates of Pavlovian conditioning and behavioral sensitization to psychomotor stimulants are reviewed. The findings of a recent experiment on the role of occupation of dopamine receptors by dopamine and its association to behavioral sensitization are reported. Daily intermittent injections of cocaine produced behavioral sensitization to the locomotor response in rats, whereas continuous cocaine infusions produced behavioral tolerance. Behavioral sensitization to cocaine was blocked by coadministration of nimodipine, anL-type calcium channel blocker. The increases in locomotion produced by cocaine was associated with an increase in the occupation of striatal dopamine D1 and D2 receptors, measured as the density of receptors protected from denaturation byN-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). This association was not observed when rats were given a challenge injection of cocaine 10 d after withdrawal from similar treatment regimens. Rats given a cocaine challenge after withdrawal from either intermittent or continuous cocaine treatment regimens exhibited increased occupations of striatal D1 and D2 receptors. This increase was similar in magnitude to that observed in rats without a history of cocaine treatments after a challenge injection of cocaine. This suggests tnat the differences in occupancy of striatal dopamine receptors by dopamine observed in the prewithdrawal condition are likely the result of differences in brain levels of cocaine achieved by the two treatment regimens. Occupancy of striatals dopamine D1 and D2 receptors does not appear to be related to the development of sensitization to the motor-stimulating effects of cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto K., Hamamura T., and Otsuki S. (1989) Subchronic cocaine treatment enhances cocaine-induced dopamine efflux: studies byin vivo intracerebral dialysis.Brain Res. 490, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Akimoto K., Hamamura T., Kazahaya Y., Akiyama K., and Otsuki S. (1990) Enhanced extracellular dopamine levels may be the fundamental neuropharmacological basis of cross-behavioral sensitization between methamphetamine and cocaine —anin vivo dialysis study in freely moving rats.Brain Res. 507, 344–346.

    Article  PubMed  CAS  Google Scholar 

  • Angrist B. (1983) Psychoses induced by central nervous system stimulants and related drugs, inStimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese I., ed.), Raven, New York, pp. 1–30.

    Google Scholar 

  • Arbuthnott G. W., Fairbrother I. S., and Butcher S. P. (1990) Dopamine release and metabolism in the rat striatum: an analysis by “in vivo” brain microdialysis.Pharmacol. Ther. 48, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Arnold E. B., Molinoff P. B., and Rutledge C. O. (1977) The release of endogeneous norepinephrine and DA from cerebral cortex by amphetamine.J. Pharmacol. Exp. Ther. 202, 544–557.

    PubMed  CAS  Google Scholar 

  • Barr G. A., Sharpless N. S., Cooper S., Schiff S. R., Paredes W., and Bridger, W. H. (1983) Classical conditioning, decay and extinction of cocaine-induced hyperactivity and stereotypy.Life Sci. 33, 1341–1351.

    Article  PubMed  CAS  Google Scholar 

  • Beninger R. J. and Hahn B. (1983) Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning.Science 220, 1304–1306.

    Article  PubMed  CAS  Google Scholar 

  • Beninger R. J. and Herz R. S. (1986) Pimozide blocks establishment but not expression of cocaine-produced environment-specific conditioning.Life Sci. 38, 1425–1431.

    Article  PubMed  CAS  Google Scholar 

  • Brown E. E. and Fibiger H. C. (1992) Cocaine-induced conditioned locomotion: absence of increases in dopamine release.Neurosci. 48, 621–629.

    Article  CAS  Google Scholar 

  • Brown E. E., Robertson G. S., and Fibiger H. C. (1992) Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures.J. Neurosci. 12, 4112–4121.

    PubMed  CAS  Google Scholar 

  • Burger L. Y. and Martin-Iverson M. T. (1993) Day/night differences in D1 but not D2 DA receptor protection from EEDQ denaturation in rats treated with continuous cocaine.Synapse 13, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Burger L. Y. and Martin-Iverson M. T. (1994) Increased occupation of D1 and D2 dopamine receptors accompanies cocaine-induced behavioural sensitization.Brain Res. 639, 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Castenada E., Becker J. B., and Robinson T. W. (1988) The long-term effects of repeated amphetamine treatment in vivo on amphetamine, KCl and electrical stimulation evoked striatal dopamine release in vitro.Life Sci. 42, 2447–2456.

    Article  Google Scholar 

  • Damianopoulos E. N. and Carey R. J. (1992) Conditioning, habituation and behavioral reorganization factors in chronic cocaine effects.Behav. Brain Res. 49, 149–157.

    Article  PubMed  CAS  Google Scholar 

  • DiLullo S. L. and Martin-Iverson M. T. (1991) Presynaptic dopaminergic neurotransmission mediates amphetamine-induced unconditioned but not amphetamine-conditioned locomotion and defecation in the rat.Brain Res. 568, 45–54.

    Article  CAS  Google Scholar 

  • DiLullo S. L. and Martin-Iverson M. T. (1992a) Evidence for presynaptic dopamine mechanisms underlying amphetamine-conditioned locomotion.Brain Res. 578, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • DiLullo S. L. and Martin-Iverson M. T. (1992b) Calcium channel blockade interacts with a neuroleptic to attenuate the conditioning of amphetamine’s behavioral effects in the rat.Biol. Psychiat. 31, 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  • Drew K. L. and Glick S. D. (1988) Characterization of the associative nature of sensitization to amphetamine-induced circling behavior and of the environment dependent placebo-like response.Psychopharmacology 95, 482–487.

    Article  PubMed  CAS  Google Scholar 

  • Eikelboom R. and Stewart J. (1982) Conditioning of drug-induced physiological responses.Psychol. Rev. 89, 507–528.

    Article  PubMed  CAS  Google Scholar 

  • Ellison G. (1992) Continuous amphetamine and cocaine have similar neurotoxic effects in lateral habenular nucleus and fasciculus retroflexus.Brain Res. 598, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Fischer J. F. and Cho A. K. (1979) Chemical release of DA from striatal homogenates: evidence for an exchange diffusion model.J. Pharmacol. Exp. Ther. 192, 642–653.

    Google Scholar 

  • Gold L. H., Swerdlow N. R., and Koob G. F. (1988) The role of mesolimbic dopamine in conditioned locomotion produced by amphetamine.Behav. Neurosci. 102, 544–552.

    Article  PubMed  CAS  Google Scholar 

  • Hinson R. E. and Poulos C. X. (1981) Sensitization of the behavioral effects of cocaine: modification by Pavlovian conditioning.Pharmacol. Biochem. Behav. 15, 559–562.

    Article  PubMed  CAS  Google Scholar 

  • Hurd Y. L., Weiss F., Koob G. F., and Ungerstedt N. (1989) Cocaine reinforcement and extracellular dopamine overflow in rat nucleus accumbens: anin vivo microdialysis study.Brain Res. 498, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Johanson C.-E. and Fischman M. W. (1989) The pharmacology of cocaine related to its abuse.Pharmacol. Rev. 41, 3–52.

    PubMed  CAS  Google Scholar 

  • Kalivas P. W. and Duffy P. (1990) The effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens.Synapse 5, 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas P. W. and Duffy P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. dopamine axon terminals.J. Neurosci. 13, 266–275.

    PubMed  CAS  Google Scholar 

  • Kazahaya Y., Akimoto K., and Saburo O. (1989) Subchronic methamphetamine treatment enhances methamphetamine- or cocaine-induced dopamine effluxin vivo.Biol. Psychiat. 25, 903–912.

    Article  PubMed  CAS  Google Scholar 

  • Kiess H. O. (1989)Statistical Concepts for the Behavioral Sciences. Allyn and Bacon, Boston, pp. 326–331.

    Google Scholar 

  • King G. R., Joyner C., Lee T., and Ellinwood E. H. (1992) Intermittent and continuous cocaine administration: residual behavioral states during withdrawal.Pharmacol. Biochem. Behav. 43, 243–248.

    Article  PubMed  CAS  Google Scholar 

  • King G. R., Kuhn C., and Ellinwood E. (1993) Dopamine efflux during withdrawal from continuous or intermittent cocaine.Psychopharmacology 111, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Kleven M. S., Woolverton W., and Seiden L. (1988) Lack of long-term monoamine depletions following repeated or continuous exposure to cocaine.Brain Res. Bull. 21, 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R. (1978) Biochemical actions of amphetamine and other stimulants, inStimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese I., ed.), Raven, New York, pp. 31–61.

    Google Scholar 

  • Kuczenski R. and Segal D. S. (1990)In vivo measures of monoamines during amphetamine-induced behavior in rat.Prog. Neuropsychopharmacol. Biol. Psychiat. 14, S37-S50.

    Article  CAS  Google Scholar 

  • Martin-Iverson M. T. (1991a) An animal model of stimulant-induced psychoses, inNeuromethods, vol. 19. Animal Models in Psychiatry I (Boulton A. A., Baker G. B., and Martin-Iverson M. T., eds.), Humana, Clifton, NJ, pp. 103–149.

    Chapter  Google Scholar 

  • Martin-Iverson M. T. (1991b) Chronic treatment with D1 and D2 dopamine receptor agonists: combined treatments interact to differentially affect brain levels of monoamines.Naunyn-Schmiedebergs Arch. Pharmacol. 344, 281–285.

    PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T. and McManus D. (1990) Stimulant-conditioned locomotion is not affected by blockade of D1 and/or D2 receptors during conditioning,Brain Res. 521, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T. and Reimer A. R. (1994) Effects of nimodipine and/or haloperidol on the expression of conditioned locomotion and sensitization to cocaine in rats.Psychopharmacology 114, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T. and Yamada N. (1992) Synergistic behavioral effects of dopamine D1 and D2 agonists are determined by circadian rhythms.Eur. J. Pharmacol. 215, 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., Stahl S. M., and Iversen S. D. (1988a) Chronic administration of a selective dopamine D2 agonist: factors determining behavioral tolerance and sensitization.Psychopharmacology 95, 534–539.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., Iversen S. D., and Stahl S. M. (1988b) Long-term motor stimulant effects of (+)-4-propyl-9-hydroxynaphthoxazine (PHNO), a dopamine D2 receptor agonist: interactions with a dopamine D1 receptor antagonist and agonist.Eur. J. Pharmacol. 149, 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., DiLullo S. L., and Reimer A. R. (1993) Nimodipine and haloperidol interactions in amphetamine and cocaine conditioned behaviors, inDrugs in Development: Ca2 + Antagonists in CNS, vol. 2 (Scriabine A., ed.), Niva, Branford, CT, pp. 417–433.

    Google Scholar 

  • Mattingly B. A. and Gotsick J. E. (1989) Conditioning and experiential factors affecting the development of sensitization to apomorphine.Behav. Neurosci. 103, 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  • Miller H. H. and Shore P. A. (1982) Effects of amphetamine and amfoelic acid on the disposition of striatal newly synthesized DA.Eur. J. Pharmacol. 78, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Muntaner C., Cascella N. G., Kumor K. M., Nagoshi C., Herning R., and Jaffe J. (1989) Placebo responses to cocaine administration in humans: effects of prior administrations and verbal instructions,Psychopharmacology 99, 282–286.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien C. P., Childress A. R., Arndt I. O., McLennan A. T., Woody G. E., and Maany I. (1988) Pharmacological and behavioral treatments of cocaine dependence: controlled studies.J. Clin. Psychiat. 49, 17–22.

    Google Scholar 

  • Pani L., Carboni S., Kusmin A., Gessa G. L., and Rossetti Z. L. (1990) Nimodipine inhibits cocaine-induced dopamine release and motor stimulation.Eur. J. Pharmacol. 176, 245–246.

    Article  PubMed  CAS  Google Scholar 

  • Patrick S. L., Thompson T. L., Walker J. M., and Patrick R. L. (1991) Concomitant sensitization of amphetamine-induced behavioral stimulation and in vivo dopamine release from rat caudate nucleus.Brain Res. 538, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Pettit H. O., Pan H.-T., Parson L. H., and Justice J. B. Jr. (1990) Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration.J. Neurochem. 55, 798–804.

    Article  PubMed  CAS  Google Scholar 

  • Post R. M. (1980) Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance.Life Sci. 26, 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  • Post R. M., Lockfield A., Squillace K. M., and Contel N. R. (1981) Drug-environment interaction: context dependency of cocaine-induced sensitization.Life Sci. 28, 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Poulos C. X. and Cappel H. (1991) Homeostatic theory of drug tolerance: general model of physiological adaptation.Psychol. Rev. 98, 390–408.

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M., Cerrito F., Cervoni A., and Levi G. (1979) DA can be released by two mechanisms differentially affected by the DA transport inhibitor nomifensine.J. Pharmacol. Exp. Ther. 208, 195–202.

    PubMed  CAS  Google Scholar 

  • Reimer A. R. and Martin-Iverson M. T. (1994) Nimodipine and haloperidol attenuate behavioural sensitization to cocaine but only nimodipine blocks the establishment of conditioned locomotion induced by cocaine.Psychopharmacology 113, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T. E. and Becker J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis.Brain Res. Rev. 11, 157–198.

    Article  CAS  Google Scholar 

  • Robinson T. E., Jurson P. A., Bennett J. A., and Bentgen K. M. (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a micro-dialysis study in freely moving rats.Brain Res. 462, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T. E., Yew J., Paulson P. E., and Camp D. M. (1990) The long-term effects of neurotoxic doses of methamphetamine on the extracellular concentration of dopamine measured with microdialysis in striatum.Neurosci. Lett. 110, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Ross S. B. (1977) On the mode of action of central stimulatory agents.Acta Pharmacol. Toxicol. 41, 392–396.

    Article  CAS  Google Scholar 

  • Ryan L., Martone M., Linder J., and Groves P. M. (1988) Cocaine, in contrast tod-amphetamine, does not cause axonal terminal degeneration in neostriatum and agranular frontal cortex of Long-Evans rats.Life Sci. 43, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Kruger J. (1971) Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain.Eur. J. Pharmacol. 14, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Segal D. S. and Kuczenski R. (1992a)In vivo microdialysis reveals a diminished ampheta-mine-induced dopamine response corresponding to behavioral sensitization produced by repeated amphetamine pretreatments.Brain Res. 571, 330–337.

    Article  PubMed  CAS  Google Scholar 

  • Segal D. S. and Kuczenski R. (1992b) Repeated cocaine administration induces behavioral sensitization and corresponding decreased extracellular dopamine responses in caudate and accumbens.Brain Res. 577, 351–355.

    Article  PubMed  CAS  Google Scholar 

  • Stewart J. and Druhan J. P. (1993) Development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the non-competitive NMDA receptor antagonist, MK-801.Psychopharmacology 110, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Stewart J. and Vezina P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine.Brain Res. 495, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Stewart J. and Vezina P. (1991) Extinction procedures abolish conditioned stimulus control but spare sensitized responding to amphetamine.Behav. Pharmacol. 2, 65–71.

    Article  PubMed  Google Scholar 

  • Tilson H. A. and Rech R. H. (1973) Conditioned drug effects and absence of tolerance to d-amphetamine induced motor activity.Pharmacol. Biochem. Behav. 1, 149–153.

    Article  CAS  Google Scholar 

  • Vezina P. (1993) Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat.Brain Res. 605, 332–337.

    Article  PubMed  CAS  Google Scholar 

  • Vezina P. and Stewart J. (1990) Amphetamine administered to the ventral tegemental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects.Brain Res. 516, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Westerink B. H. C., Hofsteede R. M., Damsma G., Rollema H., and de Vries J. B. (1989) Use of calcium antagonism for the characterization of drugevoked DA release from the brain of conscious rats determined by microdialysis.J. Neurochem. 52, 722–729.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Iverson, M.T., Burger, L.Y. Behavioral sensitization and tolerance to cocaine and the occupation of dopamine receptors by dopamine. Mol Neurobiol 11, 31–46 (1995). https://doi.org/10.1007/BF02740682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740682

Index Entries

Navigation