Skip to main content
Log in

Molecular biology of glycinergic neurotransmission

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem of vertebrates. Glycine is accumulated into synaptic vesicles by a proton-coupled transport system and released to the synaptic cleft after depolarization of the presynaptic terminal. The inhibitory action of glycine is mediated by pentameric glycine receptors (GlyR) that belong to the ligand-gated ion channel superfamily. The synaptic action of glycine is terminated by two sodium- and chloride-coupled transporters, GLYT1 and GLYT2, located in the glial plasma membrane and in the presynaptic terminals, respectively. Dysfunction of inhibitory glycinergic neurotransmission is associated with several forms of inherited mammalian myoclonus. In addition, glycine could participate in excitatory neurotransmission by modulating the activity of the NMDA subtype of glutamate receptor.

In this article, we discuss recent progress in our understanding of the molecular mechanisms that underlie the physiology and pathology of glycinergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam-Vizi V. (1992) External Ca2+-independent release of neurotransmitters.J. Neurochem. 58, 395–405.

    PubMed  CAS  Google Scholar 

  • Adams R. H., Sato K., Shimada S., Tohyama M., Püschel A. W., and Betz H. (1995) Gene structure and glial expression of the glycine transporter GLYT1 in embryonic and adult rodents.J. Neurosci. 15, 2524–2532.

    PubMed  CAS  Google Scholar 

  • Alexander F. W., Sandmeier E., Mehta P. K., and Christen P. (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes.Eur. J. Biochem. 219, 953–960.

    PubMed  CAS  Google Scholar 

  • Alfonso A., Grundahl K., Duerr J. S., Han H. P., and Rand J. B. (1993) TheCaenorhabditis elegans Unc-17 gene—a putative vesicular acetylcholine transporter.Science 261, 617–619.

    PubMed  CAS  Google Scholar 

  • Amara S. G. and Kuhar M. J. (1993) Neurotransmitter transporters: recent progress.Annu. Rev. Neurosci. 16, 73–93.

    PubMed  CAS  Google Scholar 

  • Aoki E., Semba R., Keino H., Kato K., and Kashiwamata S. (1988) Glycine-like immunoreactivity in the rat auditory pathway.Brain Res. 442, 63–71.

    PubMed  CAS  Google Scholar 

  • Aprison M. H. and Daly E. C. (1978) Biochemical aspect of transmission at inhibitory synapses; the role of glycine.Adv. Neurochem. 3, 203–295.

    CAS  Google Scholar 

  • Aragón C., Agulló L., and Giménez C. (1988) Depolarization-induced release of glycine and β-alanine from plasma membrane vesicles derived from rat brain synaptosomes.Biochim. Biophys. Acta 941, 209–216.

    PubMed  Google Scholar 

  • Aragón C., Giménez C., and Mayor F. (1987) Stoichiometry of sodium- and chloride-coupled glycine transport in synaptic plasma membrane vesicles derived from rat brain.FEBS Lett. 212, 87–90.

    PubMed  Google Scholar 

  • Araki T., Yamano M., Murakami T., Wanaka A., Betz H., and Tohyama M. (1988) Localization of glycine receptor in the rat central nervous system: an immunocytochemical analysis using monoclonal antibody.Neuroscience 25, 613–624.

    PubMed  CAS  Google Scholar 

  • Assaf S. Y. and Chung S. H. (1984) Release of endogenous Zn2+ from brain tissue during activity.Nature 308, 734–736.

    PubMed  CAS  Google Scholar 

  • Attwell D., Barbour B., and Szatkowski M. (1993) Nonvesicular release of neurotransmitter.Neuron 11, 401–407.

    PubMed  CAS  Google Scholar 

  • Ayoub G. S. and Lam D. M. (1984) The release of γ-aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina.J. Physiol. 355, 191–214.

    PubMed  CAS  Google Scholar 

  • Becker C. M., Hermans-Borgmeyer I., Schmitt B., and Betz H. (1988) The glycine receptor deficiency of mutant mouse spastic: evidence for normal glycine receptor structure and localization.J. Neurosci. 6, 1358–1364.

    Google Scholar 

  • Betz H. (1990) Homology and analogy in transmembrane channel design: Lessons from synaptic membrane proteins.Biochemistry 29, 3591–3599.

    PubMed  CAS  Google Scholar 

  • Betz H., Kuhse J., Fischer M., Schmieden V., Laube B., Kuryatov A., Langosch D., Meyer G., Bormann J., Rundström N., Matzenbach B., Kirsch J., and Ramming M (1994) Structure, diversity and synaptic localization of inhibitory glycine receptors.J. Physiol. (Paris) 88, 243–248.

    CAS  Google Scholar 

  • Biscoe T. J. and Duchen M. R. (1986) Synaptic physiology of spinal motoneurones of normal andspastic mice: an in vitro study.J. Physiol. 379, 275–292.

    PubMed  CAS  Google Scholar 

  • Bloomenthal A. B., Goldwater E., Pritchett D. B., and Harrison N. L. (1995) Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+.Mol. Pharmacol. 46, 1156–1159.

    Google Scholar 

  • Bormann J., Runström N., Betz H., and Langosch D. (1993) Residues within transmembrane M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers.EMBO J. 12, 3729–3737.

    PubMed  CAS  Google Scholar 

  • Borowsky B., Mezey E., and Hoffman B. J. (1993) Two glycine transporters variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene.Neuron 10, 851–863.

    PubMed  CAS  Google Scholar 

  • Buckwalter M. S., Cook S. A., Davidsson M. T., White W. F., and Camper S. A. (1994) A frameshift mutation in the mouse alpha 1 glycine receptor gene (Glra1) results in progressive neurological symptoms and juvenile death.Hum. Mol. Genet. 3, 2025–2030.

    PubMed  CAS  Google Scholar 

  • Budai D., Wilcox G. L., and Larson A. A. (1992) Enhancement of NMDA-evoked neuronal activity by glycine in the rat spinal cord in vivo.Neurosci. Lett. 135, 265–268.

    PubMed  CAS  Google Scholar 

  • Burger P. M., Hell J., Mehl E., Krasl C., Lottspeich F., and Jahn R. (1991) GABA and glycine in synaptic vesicles: storage and transport characteristics.Neuron 7, 287–293.

    PubMed  CAS  Google Scholar 

  • Campistron G., Buijs R. M., and Geffard M. (1986) Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization.Brain Res. 376, 400–405.

    PubMed  CAS  Google Scholar 

  • Casado M., Zafra F., Aragón C., and Giménez C. (1991) Activation of the high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures.J. Neurochem. 57, 1185–1190.

    PubMed  CAS  Google Scholar 

  • Casado M., Bendahan A., Zafra F., Danbolt N. C., Aragón C., Giménez C., and Kanner B. I. (1993) Phosphorylation and modulation of brain glutamate transporters by protein kinase C.J. Biol. Chem. 268, 27,313–27,317.

    CAS  Google Scholar 

  • Christensen H., Fyske E. M., and Fonnum F. (1990) Uptake of glycine into synaptic vesicles from rat spinal cord.J. Neurochem. 54, 1142–1147.

    PubMed  CAS  Google Scholar 

  • Clark J. A. and Amara S. G. (1993) Amino acid neurotransmitter transporters: structure, function and molecular diversity.BioEssays 15, 323–332.

    PubMed  CAS  Google Scholar 

  • Curtis D. R., Hösli L., and Johnston G. A. R. (1968) A pharmacological study of the depression of spinal neurons by glycine and related amino acids.Exp. Brain Res. 6, 1–18.

    PubMed  CAS  Google Scholar 

  • D'Angelo E., Rossi P., and Gartwaite J. (1990) Dual-component NMDA currents at a single central synapse.Nature 346, 467–470.

    PubMed  Google Scholar 

  • Davanger S., Ottersen O. P., and Storm-Mathisen J. (1991) Glutamate, GABA, and glycine in the human retina: an immunocytochemical investigation.J. Comp. Neurol. 311, 483–494.

    PubMed  CAS  Google Scholar 

  • Devillers-Thiéry A., Galzi J. L., Eiselé J. L. Bertrand S., Bertrand D., and Changeux J. P. (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels.J. Membrane Biol. 136, 97–112.

    Google Scholar 

  • During M. J., Ryder K. M., and Spencer D. D. (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy.Nature 376, 174–177.

    PubMed  CAS  Google Scholar 

  • Edwards R. H. (1993) Neural degeneration and the transport of neurotransmitters.Ann. Neurol. 34, 638–645.

    PubMed  CAS  Google Scholar 

  • Erickson J. D., Eiden L., and Hoffman B. (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter.Proc. Natl. Acad. Sci. USA 89, 10,993–10,997.

    CAS  Google Scholar 

  • Erickson J. D., Varoqui H., Schafer M. K. H., Modi W., Diebler M. F., Weihe E., Rand J., Eiden L., Bonner T. I., and Usdin T. B. (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus.J. Biol. Chem. 269, 21,929–21,932.

    CAS  Google Scholar 

  • Fedele E. and Foster A. C. (1992) [3H]Glycine uptake in rat hippocampus: kinetic analysis and autoradiographic localization.Brain Res. 572, 154–163.

    PubMed  CAS  Google Scholar 

  • Floeter M. K. and Hallet M. (1993) Glycine receptors: a startling connection.Nature Genet. 5, 319–320.

    PubMed  CAS  Google Scholar 

  • Gallo V., Patrizio M., and Levi G. (1991) GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated.Glia 4, 245–255.

    PubMed  CAS  Google Scholar 

  • Garrow T. A., Brenner A. A., Whitehead V. M. Chen X.-N., Duncan R. G., Korenberg J. R., and Shane B. (1993) Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyl-transferases and chromosomal localization.J. Biol. Chem. 268, 11,910–11,916.

    CAS  Google Scholar 

  • Gasic G. P. and Hollmann M. (1992) Molecular neurobiology of glutamate receptors.Annu. Rev. Physiol. 54, 507–536.

    PubMed  CAS  Google Scholar 

  • Gomeza J., Casado M., Giménez C., and Aragón C. (1991). Inhibition of high-affinity γ-aminobutyric acid uptake in primary astrocyte cultures by phorbol esters and phospholipase C.Biochem. J. 275, 435–439.

    PubMed  CAS  Google Scholar 

  • Gomeza J., Zafra F., Olivares L., Giménez C., and Aragón C. (1995) Regulation by phorbol esters of the glycine transporter (GLYT1) in glioblastoma cells.Biochim. Biophys. Acta 1233, 41–46.

    PubMed  Google Scholar 

  • Graham D., Pfeiffer F., and Betz H. (1983) Photoaffinity-labeling of the glycine receptor of rat spinal cord.Eur. J. Biochem. 131, 519–525.

    PubMed  CAS  Google Scholar 

  • Grenningloh G., Schmieden V., Schofield P. R., Seeburg P. H., Siddique T., Mohandas T. K., Becker C. M. and Betz, H. (1990a) Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding gene.EMBO J. 9, 771–776.

    PubMed  CAS  Google Scholar 

  • Grenningloh G., Pribilla I., Prior P., Multhaup G., Beyreuther K., Taleb O., and Betz H. (1990b) Cloning and expression of the 58 Kd β subunit of the inhibitory glycine receptor.Neuron 4, 963–970.

    PubMed  CAS  Google Scholar 

  • Grenningloh G., Rienitz A., Schmitt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinger E. D., and Betz, H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors.Nature 328, 215–220.

    PubMed  CAS  Google Scholar 

  • Grimwood S., Le Bourdellès B., and Withing P. J. (1995) Human homomeric NMDAR1 receptors transiently expressed in mammalian cells form a high affinity glycine antagonist binding site.J. Neurochem. 64, 525–530.

    PubMed  CAS  Google Scholar 

  • Grünert U. and Wässle H. (1993) Immunocytochemical localization of glycine receptors in the mammalian retina.J. Comp. Neurol. 335, 523–537.

    PubMed  Google Scholar 

  • Gu Y. and Huang L.-Y. M. (1994) Modulation of glycine receptor affinity for NMDA receptors by extracellular Ca2+ in trigeminal neurons.J. Neurosci. 14, 4561–4570.

    PubMed  CAS  Google Scholar 

  • Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., Davidson N., Lester H. A., and Kanner B. I. (1990) Cloning and expression of a rat brain GABA transporter.Science 249, 1303–1306.

    PubMed  CAS  Google Scholar 

  • Guastella J., Brecha N., Weigmann C., Lester H. A., and Davidson N. (1992) Cloning, expression, and localization of a rat brain high-affinity glycine transporter.Proc. Natl. Acad. Sci. USA 89, 7189–7193.

    PubMed  CAS  Google Scholar 

  • Hall Z. W. (1992) Recognition domains in assembly of oligomeric membrane proteins.Trends Cell Biol. 2, 66–68.

    PubMed  CAS  Google Scholar 

  • Hamill O. P., Bormann J., and Sackmann B. (1983) Activation of multiple conductance state chloride channels in spinal neurons by glycine and GABA.Nature 305, 805–808.

    PubMed  CAS  Google Scholar 

  • Hartenstein B., Schenkel J., Kuhse J., Besenbeck B., Kling C., Becker C. M., Betz H., and Weiher H. (1996) Low level expression of glycine receptor β subunit transgene is sufficient for phenotype correction in spastic mice.EMBO J. 15, 1275–1282.

    PubMed  CAS  Google Scholar 

  • Hayasaka K., Tada K., Kikuchi G., Winter S., and Nyhan W. L. (1983) Nonketotic hyperglycinemia: two patients with primary defects of P-protein and T-protein, respectively, in the glycine cleavage system.Pediatr. Res. 17, 967–970.

    PubMed  CAS  Google Scholar 

  • Hell J. W., Maycox P. R., and Jahn R. (1990) Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles.J. Biol. Chem. 265, 2111–2117.

    PubMed  CAS  Google Scholar 

  • Hiraga K. and Kikuchi G. (1980) The mitochondrial glycine cleavage system. Functional association of glycine decarboxylase and aminomethyl carrier protein.J. Biol. Chem. 255, 11,671–11,676.

    CAS  Google Scholar 

  • Hirai H., Kirsch J., Laube B., Betz H., and Kuhse J. (1966) The glycine binding site of theN-methyl-d-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region.Proc. Natl. Acad. Sci. USA 93, 6031–6036.

    Google Scholar 

  • Hoch W., Betz H., and Becker C. M. (1989) Primary cultures of mouse spinal cord express the neonatal form of the inhibitory glycine receptor.Neuron 3, 339–348.

    PubMed  CAS  Google Scholar 

  • Hollmann M., Boulter J., Maron C., Beasley L., Sullivan J., Pecht G., and Heinemann S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor.Neuron 10, 943–954.

    PubMed  CAS  Google Scholar 

  • Huganir R. L. and Greengard P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation.Neuron 5, 555–567.

    PubMed  CAS  Google Scholar 

  • Johnson J. W. and Ascher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.Nature 325, 529–531.

    PubMed  CAS  Google Scholar 

  • Johnston G. A. R. and Iversen, L. L. (1971) Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex.J. Neurochem. 18, 1951–1961.

    PubMed  CAS  Google Scholar 

  • Jursky F. and Nelson N. (1995) Localization of glycine transporter (GLYT2) reveals correlation with the distribution of glycine receptor.J. Neurochem. 64, 1026–1033.

    PubMed  CAS  Google Scholar 

  • Kanai Y., Smith P., and Hediger M. A. (1994) A new family of neurotransmitter transporters: the high-affinity glutamate transporters.FASEB J. 8, 1450–1459.

    Google Scholar 

  • Kemp J. A. and Leeson P. D. (1993) The glycine site of the NMDA receptor-five years on.Trends Pharmacol. Sci. 14, 20–25.

    PubMed  CAS  Google Scholar 

  • Kim K. M., Kingsmore S. F., Han H., Yang-Feng T. L., Godinot N., Seldin M. F., Caron M. G., and Giros B. (1994) Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes.Mol. Pharmacol. 45, 608–617.

    PubMed  CAS  Google Scholar 

  • Kingsmore S. F., Giros, B., Suh D., Bieniarz M., Caron M. G., and Seldin M. F. (1994) Glycine receptor β-subunit gene mutation in spastic mouse associated with LINE-1 element insertion.Nature Genet. 7, 136–141.

    PubMed  CAS  Google Scholar 

  • Kirsch J. and Betz H. (1995) The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton.J. Neurosci. 15, 4148–4156.

    PubMed  CAS  Google Scholar 

  • Kirsch J., Langosch D., Prior P., Littauer U. Z., Schmitt B., and Betz H. (1991) The 93 kDa glycine receptor-associated protein binds to tubulin.J. Biol. Chem. 266, 22,242–22,245.

    CAS  Google Scholar 

  • Kirsch J., Wolters I., Triller A., and Betz H. (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons.Nature 366, 745–748.

    PubMed  CAS  Google Scholar 

  • Kish P. E., Fischer-Bovenkerk C., and Ueda T. (1989) Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles.Proc. Natl. Acad. Sci. USA 86, 3877–3881.

    PubMed  CAS  Google Scholar 

  • Kleckner N. W. and Dingledine R. (1988) Requirement for glycine in activation of NMDA-receptors expressed inXenopus oocytes.Science 241, 835–837.

    PubMed  CAS  Google Scholar 

  • Kuhar M. J. and Zarbin M. A. (1978) Synaptosomal transport: a chloride dependence for choline, GABA, glycine and several other compounds.J. Neurochem. 31, 251–256.

    PubMed  CAS  Google Scholar 

  • Kuhse J., Laube B., Magalei D., and Betz H. (1993) Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry.Neuron 11, 1049–1056.

    PubMed  CAS  Google Scholar 

  • Kuhse J., Schmieden V., and Betz H. (1990a) Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor.J. Biol. Chem. 265, 22,317–22,320.

    CAS  Google Scholar 

  • Kuhse J., Schmieden V., and Betz H. (1990b) A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit.Neuron 5, 867–873.

    PubMed  CAS  Google Scholar 

  • Kuhse J., Kuryatov A., Maulet Y., Malosio M. L., Schmieden V., and Betz H. (1991) Alternative splicing generates two isoforms of the α2 subunit of the inhibitory glycine receptor.FEBS. Lett. 283, 73–77.

    PubMed  CAS  Google Scholar 

  • Kume A., Koyata H., Sakakibara T., Ishiguro Y., Kure S., and Hiraga K. (1991) The glycine cleavage system.J. Biol. Chem. 266, 3323–3329.

    PubMed  CAS  Google Scholar 

  • Kuryatov A., Laube B., Betz H., and Kuhse J. (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino-acid binding proteins.Neuron 12, 1291–1300.

    PubMed  CAS  Google Scholar 

  • Langosch D., Thomas L., and Betz H. (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer.Proc. Natl. Acad. Sci. USA 85, 7394–7398.

    PubMed  CAS  Google Scholar 

  • Langosch D., Laube B., Rundström N., Schmieden V., Bormann J., and Betz H. (1994) Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia.EMBO J. 13, 4223–4228.

    PubMed  CAS  Google Scholar 

  • Laube B., Kuryatov A., Kubse J., and Betz H. (1993) Glycine-glutamate interactions at the NMDA receptor: role of cysteine residues.FEBS Lett. 335, 331–334.

    PubMed  CAS  Google Scholar 

  • Laube B., Kuhse J., Rundström N., Kirsch J., Schmieden V., and Betz H. (1995) Modulation of the inhibitory glycine receptor by zinc ions.J. Physiol. 483, 613–619.

    PubMed  CAS  Google Scholar 

  • Leeson P. D. and Iversen L. L. (1994) The glycine site on the NMDA receptor: structure-activity relationships and therapeutic potential.J. Med. Chem. 37, 4053–4067.

    PubMed  CAS  Google Scholar 

  • Liu Q.-R., López-Corcuera B., Mandiyan S., Nelson H., and Nelson N. (1993a) Cloning and expression of a spinal cord- and brain-specific glycine transporter with novel structure features.J. Biol. Chem. 268, 22,802–22,808.

    CAS  Google Scholar 

  • Liu Q.-R., Mandiyan S., López-Corcuera B., Nelson H., and Nelson N. (1993b) A rat brain cDNA encoding a neurotransmitter transporter with an unusual structure.FEBS Lett. 315, 114–118.

    PubMed  CAS  Google Scholar 

  • Liu Y., Peter D., Roghani A., Schuldiner S., Prive G., Eisenberg D., Brecha N., and Edwards R. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70, 539–551.

    PubMed  CAS  Google Scholar 

  • Logan W. J., and Snyder S. H. (1972) High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues.Brain. Res. 42, 413–431.

    PubMed  CAS  Google Scholar 

  • López-Corcuera B., Vázquez J., and Aragón C. (1991) Purification of the sodium- and chloridecoupled glycine transporter from central nervous system.J. Biol. Chem. 266, 24,809–24,814.

    Google Scholar 

  • López-Corcuera B., Alcántara R., Vázquez J., and Aragón C. (1993) Hydrodynamic properties and immunological identification of the sodium- and chloride-coupled glycine transporter.J. Biol. Chem. 268, 2239–2243.

    PubMed  Google Scholar 

  • Luque J. M., Nelson N., and Richards J. G. (1995) Cellular expression of glycine transporter messenger RNA exclusively in rat hindbrain and spinal cord.Neuroscience 64, 525–535.

    PubMed  CAS  Google Scholar 

  • Lynch J. W., Rajendra S., Barry P. H., and Schofield P. R. (1994) Mutations affecting the glycine receptor agonist transduction mechanism convert the competitive antagonist, picrotoxin, into an allosteric potentiator.J. Biol. Chem. 270, 13,799–13,806.

    Google Scholar 

  • Mabjeesh N. J. and Kanner B. I. (1992) Neither amino nor carboxyl termini are required for function of the sodium- and chloride-coupled γ-aminobutyric acid transporter from rat brain.J. Biol. Chem. 267, 2563–2568.

    PubMed  CAS  Google Scholar 

  • Malosio M. L., Grenningloh G., Kuhse J., Schmieden V., Schmitt B., Prior P., and Betz H. (1991a) Alternatives splicing generates two variants of the α1 subunit of the inhibitory glycine receptor.J. Biol. Chem. 266, 2048–2053.

    PubMed  CAS  Google Scholar 

  • Malosio M. L., Marqueze-Pouey B., Kuhse J., and Betz H. (1991b) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain.EMBO J. 10, 2401–2409.

    PubMed  CAS  Google Scholar 

  • Matzenbach B., Maulet Y., Sefton L., Courtier B., Avner P., Guénet J. L., and Betz H. (1994) Structural analysis of mouse glycine receptor α subunit genes. Identification and chromosomal localization of a novel variant, α4.J. Biol. Chem. 269, 2607–2612.

    PubMed  CAS  Google Scholar 

  • Maycox F. R., Hell J. W., and Jahn R. (1990) Amino acid neurotransmission: spotlight on synaptic vesicles.Trends Neurosci. 13, 83–87.

    PubMed  CAS  Google Scholar 

  • Mayor F. Jr., Marvizón J. G., Aragón C., Giménez C., and Valdivieso F. (1981) Glycine transport into plasma-membrane vesicles derived from rat brain synaptosomes.Biochem. J. 198, 535–541.

    PubMed  CAS  Google Scholar 

  • Meyer G., Kirsch J., Betz H., and Langosch D. (1995) Identification of a gephyrin binding motif on the glycine receptor β subunit.Neuron 15, 563–572.

    PubMed  CAS  Google Scholar 

  • Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., and Seeburg P. H. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes.Science 256, 1217–1221.

    PubMed  CAS  Google Scholar 

  • Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37.

    PubMed  CAS  Google Scholar 

  • Mulder A. H. and Snyder S. H. (1974) Potassium-induce release of amino acids from cerebral cortex and spinal cord slices of the rat.Brain Res. 76, 297–308.

    PubMed  CAS  Google Scholar 

  • Mülhardt C., Fischer M., Gass P., Simon-Chazottes D., Guénet J. L., Kuhse J., Betz H., and Becker C. M. (1994) The spastic mouse: aberrant splicing of glycine receptor β subunit mRNA caused by intronic insertion of L1 element.Neuron 13, 1003–1015.

    PubMed  Google Scholar 

  • Naas E., Zilles K., Gnahn H., Betz H., Becker C. M., and Schröder H. (1991) Glycine receptor immunoreactivity in rat and human cerebral cortex.Brain Res. 561, 139–146.

    PubMed  CAS  Google Scholar 

  • Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain function.Science 258, 597–603.

    PubMed  CAS  Google Scholar 

  • Neal M. J. and Pickles H. G. (1969) Uptake of (14C)glycine by spinal cord.Nature 222, 679–680.

    PubMed  CAS  Google Scholar 

  • Nelson N. (1993) Presynaptic events in neurotransmission.J. Physiol. 87, 171–178.

    CAS  Google Scholar 

  • Núñez F. and Aragón C. (1994) Structural analysis and functional role of the carbohydrate component of glycine transporter.J. Biol. Chem. 269, 16,920–16,924.

    Google Scholar 

  • Okamura-Ikeda K., Fujiwara K., and Motokawa Y. (1992) Molecular cloning of a cDNA encoding chicken T-protein of the glycine cleavage system and expression of a functional protein inEscherichia coli.J. Biol. Chem. 267, 18,284–18,290.

    CAS  Google Scholar 

  • Olivares L., Aragón C., Giménez C., and Zafra F. (1994) Carboxyl terminus of the glycine transporter GLYT1 in necessary for correct processing of the protein.J. Biol. Chem. 269, 28,400–28,404.

    CAS  Google Scholar 

  • Olivares L., Aragón C., Giménez C., and Zafra F. (1995) The role ofN-glycosylation in the targeting and activity of the GLYT1 glycine transporter.J. Biol. Chem. 270, 9437–9442.

    PubMed  CAS  Google Scholar 

  • Olivares L., Aragón C., Giménez C., and Zafra F. (1997) Analysis of the transmembrane topology of the glycine transporter GLYT1.J. Biol. Chem. 272, 1211–1217.

    PubMed  CAS  Google Scholar 

  • Ottersen O. P. and Storm Mathisen J., (1987) Distribution of inhibitory amino acid neurons in the cerebellum with some observations in the spinal cord: an immunocytochemical study with antisera against fixed GABA, glycine, taurine, and β-Alanine.J. Mind Behav. 8, 503–518.

    Google Scholar 

  • Ottersen O. P., Davanger S., and Storm-Mathisen J. (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon,Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake.Exp. Brain Res. 66, 211–221.

    PubMed  CAS  Google Scholar 

  • Ottersen O. P., Storm-Mathisen J., and Somogyi P. (1988) Co-localization of glycine-like and GABA-like immunoreactivities in Golgi terminals in the rat cerebellum: A postembedding light and electron microscopic study.Brain Res. 45, 342–353.

    Google Scholar 

  • Ottersen O. P., Storm-Mathisen J., and Laake J. H. (1990) Cellular and subcellular localization of glycine studied by quantitative electron microscopic immunocytochemistry, inGlycine Neurotransmission (Ottersen O. P. and Storm-Mathisen J., eds.), John Wiley, Chichester. pp. 303–328.

    Google Scholar 

  • Otulakowski G. and Robinson B. H. (1987) Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase. Homology to other disulfide oxidoreductases.J. Biol. Chem. 262, 17,313–17,318.

    CAS  Google Scholar 

  • Pacholczyk T., Blakely R. D., and Amara S. (1991) Expression cloning of a cocaine and antidepressant-sensitive human noradrenaline transporter.Nature 350, 350–354.

    PubMed  CAS  Google Scholar 

  • Pfeiffer F., Graham D., and Betz H. (1982) Purification by affinity chromatography of glycine receptor of rat spinal cord.J. Biol. Chem. 257, 9389–9393.

    PubMed  CAS  Google Scholar 

  • Pin J. P. and Bockaert J. (1989) Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from mouse striatal neurons in primary culture.J. Neurosci. 9, 648–656.

    PubMed  CAS  Google Scholar 

  • Pourcho R. G. and Goebel D. J. (1985) Immunocytochemical demonstration of glycine in the retina.Brain Res. 348, 339–342.

    PubMed  CAS  Google Scholar 

  • Pourcho R. G. and Goebel D. J. (1990). Autoradiographic and immunocytochemical studies of glycine containing neurons in the retina, inGlycine Neurotransmission (Ottersen O. P. and Storm-Mathisen J., eds.), John Wiley, Chichester. pp. 355–389.

    Google Scholar 

  • Pribilla I., Takagi T., Langosch D., Bormann J., and Betz H. (1992) The atypical M2 segment of the β subunit confers picrotoxinin resistance to inhibitory glycine receptor channelsEMBO J. 11, 4305–4311.

    PubMed  CAS  Google Scholar 

  • Priestley T. and Kemp, J. A. (1993) Agonist response kinetics of the N-methyl-d-aspartate receptors in neurons cultured from rat cerebral cortex and cerebellum-evidence for receptor heterogeneity.Mol. Pharmacol. 42, 1252–1257.

    Google Scholar 

  • Rajendra S., Lynch J. W., Pierce K. D., French C. R., Barry P. H., and Schofield P. R. (1994) Startle disease mutation reduce the agonist sensitivity of the human inhibitory glycine receptor.J. Biol. Chem. 29, 18,739–18,742.

    Google Scholar 

  • Rajendra S., Lynch J. W., Pierce K. D., French C. R., Barry P. H., and Schofield P. R. (1995a) Mutations of an arginine residue in the human glycine receptor transform β-alamine and taurine from agonists into competitive antagonists.Neuron 14, 169–175.

    PubMed  CAS  Google Scholar 

  • Rajendra S., Vandenberg R. J., Pierce K. D., Cunningham A. M., French C. W., Barry P. H., and Schofield P. R. (1995b) The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.EMBO J. 14, 2987–2998.

    PubMed  CAS  Google Scholar 

  • Rao T. S., Cler J. A., Emmett M. R., Mick S. J., Iyengar S., and Wood P. L. (1990) Glycine, glycinamide andd-serine act as positive modulator of signal transduction at theN-methyl-d-aspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar cyclic guanosine monophosphate levels.Neuropharmacology 29, 1075–1080.

    PubMed  CAS  Google Scholar 

  • Raymond L. A., Blackstone C. D., and Huganir R. L. (1993) Phosphorilation of amino acid neurotransmitter receptors in synaptic plasticity.Trends Neurosci. 16, 147–153.

    PubMed  CAS  Google Scholar 

  • Rees M. I., Andrew M., Jawad S., and Owen M. J. (1994) Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor.Hum. Mol. Genet. 3, 2175–2179.

    PubMed  CAS  Google Scholar 

  • Roghani A., Feldman J., Kohan S. A., Shirzadi A., Gundersen C. B., Brecha N., and Edwards R. H. (1994) Molecular cloning of a putative vesicular transporter for acetylcholine.Proc. Natl. Acad. Sci. USA 91, 10,620–10,624.

    CAS  Google Scholar 

  • Ruiz-Gómez A., Morato E., Garcia-Calvo M., Valdivieso F., and Mayor F. Jr. (1990) Localization of the strychnine binding site on de 48-kilodalton subunit of the glycine receptor.Biochemistry 29, 7033–7039.

    PubMed  Google Scholar 

  • Ruiz-Gómez A., Vaello M. L., Valdivieso F., and Mayor F. Jr. (1991) Phosphorylation of the 48 kDa subunit of the glycine receptor by protein kinase C.J. Biol. Chem. 266, 559–566.

    PubMed  Google Scholar 

  • Rundström N., Schmieden V., Betz H., Bormann J., and Langosch D. (1994) Cyanotriphenylborate: subtype-specific blocker of glycine receptor chloride channels.Proc. Natl. Acad. Sci. USA 91, 8950–8954.

    PubMed  Google Scholar 

  • Ryan S. G., Buckwalter M. S., Lynch J. W. Handford C. A., Segura L., Shiang R., Wasmuth J. J., Camper S. A. Schofield P., and O'Connell P. (1994) A missense mutation in the gene encoding the α1 subunit of the inhibitory glycine receptor in thespasmodic mouse.Nature Genet. 7, 131–135.

    PubMed  CAS  Google Scholar 

  • Salt T. E. (1989) Modulation of NMDA receptor-mediated responses by glycine andd-serine in the rat thalamusin vivo.Brain Res. 481, 403–406.

    PubMed  CAS  Google Scholar 

  • Sato K., Yoshida S., Fujiwara K., Tada K., and Tohyama M. (1991a) Glycine cleavage system in astrocytes.Brain Res. 567, 64–70.

    PubMed  CAS  Google Scholar 

  • Sato K., Zhang J. H., Saika T., Sato M., Tada K., and Tohyama M. (1991b) Localization of glycine receptor a1 subunit mRNA-containing neurons in the rat brain: an analysis usingin situ hybridization histochemistry.Neuroscience 43, 381–395.

    PubMed  CAS  Google Scholar 

  • Saul B., Schmieden V., Kling C., Mülhardt C., Gass P., Kuhse J., and Becker C. M. (1994) Point mutation of glycine receptor α1 subunit in thespasmodic mouse affects agonist responses.FEBS Lett. 350, 71–76.

    PubMed  CAS  Google Scholar 

  • Schmieden V., Grennigloh G., Schofield P. R., and Betz, H. (1989) Functional expression inXenopus oocytes of the strychnine binding 48 kDa subunit of glycine receptor.EMBO J. 8, 695–700.

    PubMed  CAS  Google Scholar 

  • Schmieden V., Kuhse J., and Betz H. (1992) Agonist pharmacology of neonatal and adult glycine receptor a subunits: identification of amino acid residues involved in taurine activation.EMBO J. 11, 2025–2032.

    PubMed  CAS  Google Scholar 

  • Schmitt B., Knaos P., Becker C. M., and Betz H. (1987) The Mr 93.000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein.Biochemistry 26, 805–811.

    PubMed  CAS  Google Scholar 

  • Schónrock B. and Bormann J. (1995) Modulation of hippocampal glycine receptor channels by protein kinase C.NeuroReport 6, 301–304.

    PubMed  Google Scholar 

  • Schwarz E. A. (1982) Calcium-independent release of GABA from isolated cells of the toad retina.J. Physiol. 323, 211–228.

    Google Scholar 

  • Schwarz E. A. (1987) Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron.Science 238, 350–355.

    Google Scholar 

  • Shiang R., Ryan S. G., Zhu Y-Z., Hahn A. F., O'Connell P., and Wasmuth J. J. (1993) Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder hyperekplexia.Nature Genet. 5, 351–357.

    PubMed  CAS  Google Scholar 

  • Shupliakov O., Ornung G., Brodin L., Ulfhake B., Ottersen O. P., Storm-Mathisen J., and Cullheim S. (1993) Immunocytochemical localization of amino acid neurotransmitter candidates in the ventral horn of the cat spinal cord: a light microscopic study.Exp. Brain Res. 96, 404–418.

    PubMed  CAS  Google Scholar 

  • Singh L., Oles R. J., and Tricklebank M. D. (1990) Modulation of seizure susceptibility in the mouse by strychnine-insensitive glycine recognition site of the NMDA receptor/ion channel complex.Br. J. Pharmacol. 99, 285–288.

    PubMed  CAS  Google Scholar 

  • Smart T. G. (1992) A novel modulatory binding site for zinc on the GABAA receptor complex in cultured rat neurones.J. Physiol. 447, 587–625.

    PubMed  CAS  Google Scholar 

  • Smith K. F., Borden L. A., Harting P. R., Branchek T., and Weinshank R. L. (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors.Neuron 8, 927–935.

    PubMed  CAS  Google Scholar 

  • Song Y. and Huang L. Y. M. (1990) Modulation of glycine receptor chloride channels by cAMP-dependent protein kinase is spinal trigeminal neurons.Nature 348, 242–245.

    PubMed  CAS  Google Scholar 

  • Spike R. C., Watt C., Zafra F., and Todd A. J. (1996) An ultrastructural study of the glycine transporter GLYT2 and its association with glycine in the superficial laminae of the rat spinal dorsal horn.Neuroscience,77, 543–551.

    Google Scholar 

  • Szatkowski M. and Attwell D. (1994) Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms.Trends Neurosci. 17, 359–365.

    PubMed  CAS  Google Scholar 

  • Szatkowski M., Barbour B., and Attwell D. (1990) Non vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake.Nature 348, 443–446.

    PubMed  CAS  Google Scholar 

  • Takahashi T., Momiyama A., Hirai K., Hishinuma B., and Akagi H. (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels.Neuron 9, 1155–1161.

    PubMed  CAS  Google Scholar 

  • Thiels E., Weisz D. J., and Berger T. W. (1992) In vivo modulation ofN-methyl-d-aspartate receptor-dependent long-term potentiation by the glycine modulatory site.Neuroscience 46, 501–509.

    PubMed  CAS  Google Scholar 

  • Todd A. and Sullivan, A. C. (1990) Light microscope study of coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat.J. Comp. Neurol. 296, 496–505.

    PubMed  CAS  Google Scholar 

  • Todd A. J., Watt C., Spike R. C., and Sieghart W. (1996) Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord.J. Neurosci. 16, 974–982.

    PubMed  CAS  Google Scholar 

  • Triller A., Cluzeaud F., Pfeiffer F., Betz, H., and Korn H. (1985) Distribution of glycine receptors at central synapses: an inmunoelectron microscopy study.J. Cell Biol. 101, 683–688.

    PubMed  CAS  Google Scholar 

  • Uchiyama M., Hirai K., Hishinuma F., and Akagi H. (1994) Down-regulation of glycine receptor channels by protein kinase C inXenopus oocytes injected with synthetic RNA.Mol. Brain Res. 24, 295–300.

    PubMed  CAS  Google Scholar 

  • Uhl G. R. and Hartig P. R. (1992) Transporter explosion: update on uptake.Trends Pharm. Sci. 13, 421–425.

    PubMed  CAS  Google Scholar 

  • Uhl G. R., Kitayama S., Gregor P., Nanthakumar E., Persico A., and Shimana S. (1992) Neurotransmitter transporter family cDNAs in a rat midbrain library: “orphan transporters” suggest sizable structural variations.Mol. Brain Res. 16, 353–359.

    PubMed  CAS  Google Scholar 

  • Unwin (1993) Neurotransmitter action opening of ligand gated ion channels.Cell 72/Neuron 10, 31–41.

    Google Scholar 

  • Vaello M. L., Ruiz-Gómez A., Lerma J., and Mayor F. Jr. (1994) Modulation of the inhibitory glycine receptors by phosphorylation by protein kinase C and cAMP-dependent protein kinase.J. Biol. Chem. 269, 2002–2008.

    PubMed  CAS  Google Scholar 

  • van den Pol A. and Gorcs T. (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord.J. Neurosci. 8, 472–492.

    PubMed  Google Scholar 

  • Varoqui H., Diebler M., Meunier F., Rand J., Usdin T., Bonner T., Eiden L., and Erickson J. D. (1994) Cloning and expression of the vesamicol binding protein from the marine ray Torpedo: homology with the putative vesicular acetylcholine transporter unc-17 fromCaenorhabditis elegans.FEBS Lett. 342, 97–102.

    PubMed  CAS  Google Scholar 

  • Wadman W. J., Heinemann U., Konnerth A., and Neuhaus S. (1985) Hippocampal slices of kindled rats reveal calcium involvement in epileptogenesis.Exp. Brain Res. 57, 404–407.

    PubMed  CAS  Google Scholar 

  • Wafford K. A., Bain C. J., Le Bourdellès B., Whiting P. J., and Keemp J. A. (1993) Preferential co-assembly of recombinant NMDA receptors composed of three different subunits.NeuroReport 4, 1347–1349.

    PubMed  CAS  Google Scholar 

  • Wenthold R. and Hunter C. (1990) Immunocytochemistry of glycine and glycine receptors in the central auditory system, inGlycine Neurotransmission (Ottersen O. P. and Storm-Mathisen J., eds.), John Wiley, Chichester pp. 391–415.

    Google Scholar 

  • Wenthold R. J., Parakkal M. H., Oberdorfer M. D., and Altschuler R. A. (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig.J. Comp. Neurol. 276, 423–435.

    PubMed  CAS  Google Scholar 

  • Wenthold R. J., Huie D., Altschuler R. A., and Reeks K. A. (1987) Glycine immunoreactivity in the cochlear nucleus and superior olivary complex.Neuroscience 22, 897–912.

    PubMed  CAS  Google Scholar 

  • Werman R., Davidoff R. A., and Aprison M. H. (1967) Inhibition of motoneurons by iontophoresis of glycine.Nature 214, 681–683.

    PubMed  CAS  Google Scholar 

  • White W. F. and Heller, A. H. (1982) Glycine receptor alteration in the mutant mousespastic.Nature 298, 655–657.

    PubMed  CAS  Google Scholar 

  • Yazulla S. and Kleinschmidt J. (1983) Carrier-mediated release of GABA from retinal horizontal cells.Brain Res. 263, 63–75.

    PubMed  CAS  Google Scholar 

  • Zafra F. and Giménez C. (1986) Characterization of glycine uptake in plasma membrane vesicles isolated from cultured glioblastoma cells.Brain Res. 397, 108–116.

    PubMed  CAS  Google Scholar 

  • Zafra F. and Giménez C. (1988) Efflux and exchange of glycine by plasma membrane vesicles isolated from glioblastoma cells.Biochim. Biophys. Acta 946, 202–208.

    PubMed  CAS  Google Scholar 

  • Zafra F., Alcántara R., Gomeza J., Aragón C., and Giménez C. (1990) Arachidonic acid inhibits glycine transport in cultured glial cells.Biochem. J. 271, 237–242.

    PubMed  CAS  Google Scholar 

  • Zafra F., Aragón C., Olivares L., Danbolt N. C., Giménez C., and Storm-Mathisen J. (1995a) Glycine transporters are differentially expressed among CNS cells.J. Neurosci. 15, 3952–3969.

    PubMed  CAS  Google Scholar 

  • Zafra F., Gomeza J., Olivares L., Aragón C., and Giménez C. (1995b) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS.Eur. J. Neurosci. 7, 1342–1352.

    PubMed  CAS  Google Scholar 

  • Zarbin M. A., Wamsley J. K., and Kuhar M. J. (1981) Glycine receptor: Light microscopic autoradiographic localization with [3H]strychnine.J. Neurosci. 1, 532–547.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafra, F., Aragón, C. & Giménez, C. Molecular biology of glycinergic neurotransmission. Mol Neurobiol 14, 117–142 (1997). https://doi.org/10.1007/BF02740653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740653

Index Entries

Navigation