Skip to main content
Log in

Making sense of the multiple MAP-2 transcripts and their role in the neuron

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microtubule-associated protein-2 (MAP-2) is a family of heat-stable, phosphoproteins expressed predominantly in the cell body and dendrites of neurons. Three major MAP-2 isoforms, (MAP-2a, MAP-2b, MAP-2c) are differentially expressed during the development of the nervous system and have an important role in microtubule dynamics. Several MAP-2 cDNA clones that correspond to the major MAP-2 transcripts and additional, novel MAP-2 transcripts expressed in the CNS and PNS have been characterized. The transcripts result from the alternative splicing of a single MAP-2 gene consisting of 20 exons. Studies are now being directed toward understanding the role of the multiple MAP-2 forms that contain novel exons in the nervous system. The expression, localization, and possible functions of the newly identified spliced forms are the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsztein and Purich D. (1984) Stimulation of tubulin polymerization by MAP-2. Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region.J. Biol. Chem. 269, 28,465–28,471.

    Google Scholar 

  • Albala J. S., Kalheva N., and Shafit-Zagardo B. (1993) Characterization of the transcripts encoding MAP-2b and MAP-2c.Gene 136, 377–378.

    PubMed  CAS  Google Scholar 

  • Albala J. S., Kress Y., Liu W.-K., Weidenheim K., Yen S.-H. C., and Shafit-Zagardo B. (1995) Human microtubule-associated protein-2c (MAP-2c) localizes to dendrites and axons in fetal spinal motor neurons.J. Neurochem. 64, 2480–2490.

    PubMed  CAS  Google Scholar 

  • Baas P. W. and Black M. M. (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability.J. Cell Biol. 111, 495–509.

    PubMed  CAS  Google Scholar 

  • Bass P. W., Deitch I. S., Black M. M., and Banker G. A. (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA 85, 8335–8339.

    Google Scholar 

  • Bernhardt R. and Matus A. (1984) Light and electron microscopic studies of the distribution of microtubule associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.J. Comp. Neurol. 226, 203–221.

    PubMed  CAS  Google Scholar 

  • Binder L. I., Frankfurter A., Kim H., Caceres A., Payne M. R., and Rebhun L. L. (1984) Heterogeneity of microtubule associated protein 2 during rat brain development.Proc. Natl. Acad. Sci. USA 81, 5613–5617.

    PubMed  CAS  Google Scholar 

  • Bruckenstein D. A., Lein P. J., Higgins D., and Fremeau R. T. Jr. (1990) Distinct spatial localization of specific mRNAs in cultured sympathetic neurons.Neuron 5, 809–819.

    PubMed  CAS  Google Scholar 

  • Brugg B. and Matus A. (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells.J. Cell Biol. 114, 735–743.

    PubMed  CAS  Google Scholar 

  • Bulinski J. C. and Gundersen G. G. (1991) Stabilization of post-translational modification of microtubules during cellular morphogenesis.Bioassays 13, 285–293.

    CAS  Google Scholar 

  • Burgoyne R. D. and Cumming R. (1984) Ontogeny of microtubule-associated protein 2 in rat cerebellum: differential expression of the doublet polypeptides.Neuroscience 11, 156–167.

    PubMed  CAS  Google Scholar 

  • Burns R. G., Islam K., and Chapman R. (1984) The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2: tubulin interaction.Eur. J. Biochem. 141, 609–615.

    PubMed  CAS  Google Scholar 

  • Burton P. R. (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity.Brain Res 473, 107–115.

    PubMed  CAS  Google Scholar 

  • Caceres A., Banker G., Steward O., Binder L., and Payne M. (1984) MAP2 is localized to the dendrites of hippocampal neurons which develop in culture.Dev. Brain Res. 13, 314–318.

    Google Scholar 

  • Caceres A., Mautino J., and Kosik K. S. (1992) Suppression of MAP-2 in cultured cerebellar macroneurons inhibits minor neurite formation.Neuron 9, 607–618.

    PubMed  CAS  Google Scholar 

  • Cambry-Deakin M. A. and Burgoyne R. D. (1987) Posttranslational modifications of alpha-tubulin: Acetylated and detyrosinated forms in axons of rat cerebellum.J. Cell. Biol. 104, 1569–1574.

    Google Scholar 

  • Chamak B., Fellous A., Glowinski J., and Prochiantz A. (1987) MAP-2 expression and neuritic out-growth and branching are coregulated through region-specific neuro-astroglial interactions.J. Neurosci. 7, 3163–3170.

    PubMed  CAS  Google Scholar 

  • Chen J., Kanai Y., Cowan N., and Hirokawa N. (1992) Projection domains of MAP-2 and tau determine the spacing between microtubules in dendrites and axons.Nature 360, 674–677.

    PubMed  CAS  Google Scholar 

  • Chung W. J., Kindler S., Seidenbecher C., and Garner C. C. (1996) MAP-2a, an alternatively spliced variant of MAP-2.J. Neurochem. 66, 1273–1281.

    PubMed  CAS  Google Scholar 

  • Cleveland D. W., Hwo S. Y., and Kirschner M. W. (1977) Purification of tau, a microtubule associated protein that induces assembly of microtubules from purified tubulin.J. Mol. Biol. 116, 207–225.

    PubMed  CAS  Google Scholar 

  • Couchie D., Chabas S., Mavilia C., and Nunez J. (1996) New Forms of HMW MAP-2 are preferentially expressed in the spinal cord.FEBS Lett. 388, 76–79.

    PubMed  CAS  Google Scholar 

  • Crino P. B. and Eberwine J. (1996) Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis.Neuron 17, 1171–1187.

    Google Scholar 

  • Cummings R., Burgoyne R. D., and Lytton N. A. (1984) Immunofluorescence distribution of alpha tubulin, beta tubulin and microtubule-associated protein 2 during in vitro maturation of cerebellar granule cell neurones.Neuroscience 12, 775–782.

    Google Scholar 

  • Cunningham C. C., Leclerc N., Flanagan L. A., Lu M., Janmey P. A., and Kosik K. S. (1997) Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line.J. Cell Biol. 136, 845–857.

    PubMed  CAS  Google Scholar 

  • Dammerman M., Yen S.-H., and Shafit-Zagardo B. (1989) Sequence of a human MAP-2 region sharing epitopes with Alzheimer neurofibrillary tangles.J. Neurosci. Res. 24, 487–495.

    PubMed  CAS  Google Scholar 

  • De Camilli P., Miller P. E., Navone F., Theurkauf W. E., and Vallee R. B. (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.Neuroscience 11, 817–846.

    PubMed  Google Scholar 

  • Dinsmore J. H. and Solomon F. (1991) Inhibition of MAP-2 expression affects both morphological and cell division phenotypes of neuronal differentiation.Cell 64, 817–826.

    PubMed  CAS  Google Scholar 

  • Doll T., Meichsner M., Riederer B. M., Honegger P., and Matus A. (1993) An isoform of microtubule associated protein-2 (MAP-2) containing four repeats of the tubulin binding motif.J. Cell Sci. 106, 633–639.

    PubMed  CAS  Google Scholar 

  • Doll T., Papandrikopoulou A., and Matus A. (1990) Nucleotide and amino acid sequences of embryonic rat MAP2c.Nucl. Acid Res. 18, 361.

    CAS  Google Scholar 

  • Fellous A., Francon J., Lennon A. M., and Nunez J. (1977) Microtubule assembly in vitro.Eur J Biochem. 78, 167–174.

    PubMed  CAS  Google Scholar 

  • Ferhat L., Bernard A., Ribas de Pouplana L., Ben-Ari Y., and Khrestchatisky M. (1994) Structure, regional and developmental expression of rat MAP2d, a splice variant encoding four microtubule-binding domains.Neurochem. Intl. 25, 327–338.

    CAS  Google Scholar 

  • Ferhat L., Represa A., Bernard A., Ben-Ari Y., and Khrestchatisky M. (1996) MAP2d promotes bundling and stabilization of both microtubules and microfilaments.J. Cell Sci. 109, 1095–1103.

    PubMed  CAS  Google Scholar 

  • Ferreira A. J., Busciglio J., and Caceres A. (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW MAP-2 and tau.Dev. Brain Res. 49, 215–228.

    CAS  Google Scholar 

  • Ferreira A. J., Busciglio J., Landa C., and Caceres A. (1990) Ganglioside-enhanced neurite growth: evidence for a selective induction of HMW MAP-2.J. Neurosci. 10, 293–302.

    PubMed  CAS  Google Scholar 

  • Fischer I., Richter-Landsbert C., and Safaei R. (1991) Regulation of microtubule-associated protein-2 (MAP-2) expression by nerve growth factor in PC12 cells.Exp. Cell Res. 194, 195–201.

    PubMed  CAS  Google Scholar 

  • Forleo P., Couchie D., Chabas S., and Nunez J. (1996) Four repeat HMW MAP2 forms in rat dorsal root ganglia.J. Molec. Neurosci. 7, 193–201.

    PubMed  CAS  Google Scholar 

  • Friedrich P. and Aszedi A. (1991) MAP2: a sensitive crosslinker and adjustable spacer in dendritic architecture.FEBS Lett. 295, 5–9.

    PubMed  CAS  Google Scholar 

  • Garner C. C. and Matus A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.J. Cell Biol. 106, 779–783.

    PubMed  CAS  Google Scholar 

  • Garner C. C., Brugg B., and Matus A. (1988) A70 kilodalton microtubule-associated protein (MAP2c), related to MAp2.J. Neurochem 50, 609–615.

    PubMed  CAS  Google Scholar 

  • Garner C. C., Tucker R. P., and Matus A. (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.Nature 336, 674–677.

    PubMed  CAS  Google Scholar 

  • Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., and Shelanski M. L. (1974) A dynein-like protein associated with microtubules.FEBS Lett. 40, 281–286.

    PubMed  CAS  Google Scholar 

  • Greer K., Rosenbaum J. L. (1989) Posttranslational modifications of tubulin, inCell Movement, vol. 2. (Warner F. D. and McIntosh R., eds.). Liss, New York pp. 47–66.

    Google Scholar 

  • Guilleminot J., Langkopf A., and Nunez J. (1995) Identification of a new exon of the brain MAP-2.Compt. Rend. Ac. Sci. 318, 304–309.

    Google Scholar 

  • Gundersen G. G., Khawaja S., and Bulinski J. C. (1987) Postpolymerization dephosphorylation of alpha-tubulin: a mechanism for subcellular differentiation of microtubules.J. Cell Biol. 105, 251–264.

    PubMed  CAS  Google Scholar 

  • Gurland G. and Gundersen G. G. (1993) Protein phosphatase inhibitors induce the selective breakdown of stable microtubules in fibroblasts and epithelial cells.Proc. Natl. Acad. Sci. USA 90, 8827–8831.

    PubMed  CAS  Google Scholar 

  • Hernandez M. A., Wandosell F., and Avila J. (1987) Localization of the phosphorylation sites for different kinases in the microtubule-associated protein MAP2.J. Neurochem. 48, 8–93.

    Google Scholar 

  • Hirokawa N., Funakoshi T., Sato-Harada R., and Kanai Y. (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.J. Cell. Biol. 132, 667–679.

    PubMed  CAS  Google Scholar 

  • Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., and Nishida E. (1992) Mitogen-activated protein kinase catalyzed phosphorylation of microtubule associated proteins, microtubule associated protein 2 and microtubule associated protein 4, induces an alteration in their function.Eur. J. Biochem. 203, 43–52.

    PubMed  CAS  Google Scholar 

  • Johnson G. V. W. and Jope R. S. (1992) Mini-review: the role of microtubule-associated protein (MAP-2) in neuronal growth, plasticity, and degeneration.J. Neurosci. Res. 33, 505–512.

    PubMed  CAS  Google Scholar 

  • Kaech S., Ludin B., and Matus A. (1996) Cytoskeletal plasticity in cells expressing neuronal microtubules-associated proteins.Neuron 17, 1189–1199.

    PubMed  CAS  Google Scholar 

  • Kalcheva N., Rockwood J. M., Kress Y., Steiner A., and Shafit-Zagardo B. (1998) Molecular and functional characteristics of MAP-2a: Ability of MAP-2a versus MAP-2b to induce stable microtubules in COS cell.Cell Motil. Cytoskel., in press.

  • Kalcheva N. and Shafit-Zagardo B. (1995) Three unique 5′ untranslated regions are spliced to common coding exons of high- and low-molecular weight microtubule-associated protein-2.J. Neurochem. 65, 1472–1480.

    PubMed  CAS  Google Scholar 

  • Kalcheva N., Albala J., O'Guin K., Rubino H., Garner C., and Shafit-Zagardo B. (1995) Genomic structure of human MAP2 and characterization of additional MAP-2 isoforms.Proc. Natl. Acad. Sci. USA 92, 10,894–10,898.

    CAS  Google Scholar 

  • Kalcheva N., Weidenheim K. M., Kress Y., and Shafit-Zagardo B. (1997) Expression of MAP-2a and other novel MAP-2 transcripts in human fetal spinal cord.J. Neurochem. 68, 383–391.

    PubMed  CAS  Google Scholar 

  • Kanai Y. and Hirokawa N. (1995) Sorting mechanisms of tau and MAP-2 in neurons: suppressed axonal transit of MAP-2 and locally regulated microtubule binding.Neuron 14, 421–432.

    PubMed  CAS  Google Scholar 

  • Keates R. A. B. and Hall R. H. (1975) Tubulin requires an accessory protein for self-assembly into microtubules.Nature 257, 418–421.

    PubMed  CAS  Google Scholar 

  • Kim H., Binder L. I., and Rosenbaum J. L. (1979) The periodic association of MAP-2 with brain microtubules in vitro.J. Cell Biol. 80, 266–276.

    PubMed  CAS  Google Scholar 

  • Kindler S. and Garner C. C. (1994) Four repeat MAP-2 isoforms in human and rat brain.Mol. Brain Res. 26, 218–224.

    PubMed  CAS  Google Scholar 

  • Kindler S., Muller R., Chung W. J., and Garner C. C. (1996) Molecular characterization of dendritically localized transcripts encoding MAP-2.Mol. Brain Res. 36, 63–69.

    PubMed  CAS  Google Scholar 

  • Kindler S., Schulz B., Goedert M., and Garner C. C. (1990) Molecular structure of microtubule-associated protein 2b and 2c from rat brain.J. Biol. Chem. 265, 19,679–19,684.

    CAS  Google Scholar 

  • Kleiman R., Banker G., and Steward O. (1990) Differential subcellular localization of particular mRNAs in hippocampal neurons in culture.Neuron 5, 821–830.

    PubMed  CAS  Google Scholar 

  • Kleiman R., Banker G., and Steward O. (1993) Inhibition of protein synthesis alters the subcellular distribution of mRNA in neurons but does not prevent dendritic transport of RNA.Proc. Natl. Acad. Sci. USA 90, 11,192–11,196.

    CAS  Google Scholar 

  • Knowles R. B., Sabry J. H., Martone M. E., Deerinck T. J., Ellisman M. H., Bassell G. J., and Kosik K. S. (1996) Translocation of RNA granules in living neurons.J. Neurosci. 16, 7812–7820.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Orecchio L. D., Bakalis S., Duffy L., and Neve R. (1988) Partial sequence of MAP-2 in the region of a shared epitope with Alzheimer neurofibrillary tangles.J. Neurochem. 51, 587–598.

    PubMed  CAS  Google Scholar 

  • Langkopf A., Guilleminot J., and Nunez J. (1994) Two novel HMW MAP2 variants with four microtubule-binding repeats and different projection domains.FEBS Lett. 354, 259–262.

    PubMed  CAS  Google Scholar 

  • Lewis S. A., Wang D., and Cowan N. J. (1988) Microtubule associated protein MAP-2 shares a microtubule-binding motif with tau protein.Science 242, 936–939.

    PubMed  CAS  Google Scholar 

  • Loveland K. L., Hayes T. M., Meinhardt A., Zlatic K. S., Parvinen M., de Kretser D. M., and McFarlane J. R. (1996) Microtubule-associated protein-2 in the testis: a novel site of expression.Biol. Reproduction 54, 896–904.

    CAS  Google Scholar 

  • Mandelkow E. M., Lange G., Jagla A., Spann U., and Mandelkow E. (1988) Dynamics of the microtubule oscillator: Role of nucleotides and tubulin-MAP interactions.EMBO J. 7, 357–365.

    PubMed  CAS  Google Scholar 

  • Marsden K. M., Doll T., Ferralli J., Botteeri F., and Matus A. (1996) Transgenic expression of embryonic MAP2 in adult mouse brain: implications for neuronal polarization.J. Neurosci. 16, 3265–3273.

    PubMed  CAS  Google Scholar 

  • Matus A. (1988) MAPs: their potential role in determining neuronal morphology.Ann. Rev. Neurosci. 11, 29–44.

    PubMed  CAS  Google Scholar 

  • Matus A. (1994) MAP2, inMicrotubules (Hyman J. S. and Lloyd C. W., eds). Wiley, New York, pp. 155–166.

    Google Scholar 

  • Matus A., Bernhardt R., and Hugh Jones T. (1981) High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain.Proc. Natl. Acad. Sci. USA 78, 3010–3014.

    PubMed  CAS  Google Scholar 

  • Morest D. K. (1962). The growth of dendrites in the mammalian brain.Z. Anat. Entwickl-Gesch. 128, 290–317.

    Google Scholar 

  • Murphy D. B. and Borisy G. G. (1975) Association of HMW proteins with microtubules and their role in microtubule assembly in vitro.Proc. Natl. Acad. Sci. USA 72, 2696–2700.

    PubMed  CAS  Google Scholar 

  • Neve R. L., Harris P., Kosik K. S., Kurnit D. M., and Donlon T. (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and the microtubule-associated protein 2.Mol. Brain Res. 1, 271–280.

    CAS  Google Scholar 

  • Obar R. A., Dingus J., Bayley H., Vallee R. B. (1989) The RII subunit of cAMP-dependent protein kinase binds to a common amino-terminal domain on microtubule-associated proteins 2A, 2B, and 2C.Neuron 3, 639–645.

    PubMed  CAS  Google Scholar 

  • Okabe S. and Hirokawa N. (1989) Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons.Proc. Natl. Acad. Sci. USA 86, 4127–4131.

    PubMed  CAS  Google Scholar 

  • Olesen O. F. (1994) Expression of low molecular weight isoforms of microtubule-associated protein 2. Phosphorylation and induction of microtubule assembly in vitro.J. Biol. Chem. 269, 32,904–32,908.

    CAS  Google Scholar 

  • Olmsted J. B. (1986) Microtubule-associated proteins.Ann. Rev. Cell Biol. 2, 421–457.

    PubMed  CAS  Google Scholar 

  • Papandrikopoulou A., Doll T., Tucker R. P., Garner C. C., and Matus A. (1989) Embryonic AMP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2.Nature 340, 650–652.

    PubMed  CAS  Google Scholar 

  • Papasozomenos S. C. and Binder L. I. (1986) Microtubule-associated protein 2 (MAP2) is present in astrocytes of the optic nerve but absent from astrocytes of the optic tract.J. Neurosci. 6, 1748–1756.

    PubMed  CAS  Google Scholar 

  • Piperno G., LeDizet M., and Chang X. (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture.J. Cell Biol. 104, 289–302.

    PubMed  CAS  Google Scholar 

  • Quinlin E. M. and Halpain S. (1996a) Postsynaptic mechanisms for bidirectional control of MAP-2 phosphorylation by glutamate receptors.Neuron 16, 357–368.

    Google Scholar 

  • Quinlin E. M. and Halpain S. (1996b) Emergence of activity-dependent, bi-directional control of microtubule-associated protein MAP-2 phosphorylation during postnatal development.J. Neurosci. 16, 7627–7637.

    Google Scholar 

  • Riederer B., and Matus A. (1985) Differential expression of distinct microtubule-associated proteins during brain development.Proc. Natl. Acad. Sci. USA 82, 6006–6009.

    PubMed  CAS  Google Scholar 

  • Rubino H. M., Dammerman M., Shafit-Zagardo B., and Erlichman J. (1989) Localization and characterization of the binding site for the regulatory subunit of type II cAMP dependent protein kinase of MAP2.Neuron 3, 631–638.

    PubMed  CAS  Google Scholar 

  • Schulze E. and Kirschner M. (1987) Dynamic and stable populations of microtubules in cells.J. Cell Biol. 104, 277–288.

    PubMed  CAS  Google Scholar 

  • Shafit-Zagardo B., Kalcheva N., Dickson D., Davies P., and Kress Y. (1997) Distribution and subcellular localization of HMW MAP-2 expressing exon 8 in brain and spinal cord.J. Neurochem. 68, 862–873.

    PubMed  CAS  Google Scholar 

  • Sharma N., Kress Y., and Shafit-Zagardo B. (1994) Antisense MAP-2 oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neurites of rat cortical neurons.Cell Motil. Cytoskel. 27, 234–247.

    CAS  Google Scholar 

  • Sloboda R. D., Rudolph S. A., Rosenbaum J. L., and Greengard P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72, 177–181.

    PubMed  CAS  Google Scholar 

  • Stumpo D. J., Graff J. M., Albert K. A., Greengard P., and Blackshear P. J. (1989) Molecular cloning, characterization, and expression of a cDNA encoding the “80- to 87-kDa” myristolated alanine-rich C kinase substrate: A major cellular substrate for protein kinase C.Proc. Natl. Acad. Sci. USA 86, 4012–4016.

    PubMed  CAS  Google Scholar 

  • Takemura R., Okabe S., Umeyama T., Kanai Y., Cowan N. J., and Hirokawa N. (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP-1B, MAP-2 or tau.J. Cell Sci. 103, 953–964.

    PubMed  CAS  Google Scholar 

  • Theurkauf W. E. and Vallee R. B. (1983) Extensive cAMP dependent and cAMP-independent phosphorylation of microtubule-associated protein 2.J. Biol. Chem. 258, 7883–7886.

    PubMed  CAS  Google Scholar 

  • Tsuyama S., Bramblett G. T., Huang K.-P., and Flavin M. (1986) Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases.J. Biol. Chem. 261, 4110–4116.

    PubMed  CAS  Google Scholar 

  • Tsuyama S., Terayama Y., and Matsayama S. (1987) Numerous phosphates of microtubule-associated protein 2 in living rat brain.J. Biol. Chem. 262, 10,886–10,892.

    CAS  Google Scholar 

  • Tucker R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review.Brain Res. Rev. 15, 101–120.

    PubMed  CAS  Google Scholar 

  • Tucker R. P. and Matus A. I. (1988) Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina.Dev. Biol. 130, 423–434.

    PubMed  CAS  Google Scholar 

  • Tucker R. P., Binder L. I., Viereck C., Hemmings B. A., and Matus A. (1988) The sequential appearance of low- and high molecular weight forms of MAP2 in the developing cerebellum.J. Neurosci. 12, 4503–4512.

    Google Scholar 

  • Tucker R. P., Garner C. C., and Matus A. (1989) In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain.Neuron 2, 1245–1256.

    PubMed  CAS  Google Scholar 

  • Vallee R. B. (1980) Structure and phosphorylation of microtubule associated protein 2 (MAP2).Proc. Natl. Acad. Sci. USA 77, 3206–3210.

    PubMed  CAS  Google Scholar 

  • Vallee R. B. and Bloom G. S. (1984) High molecular weight microtubule-associated proteins (MAPs).Modern Cell Biol. 3, 21–75.

    CAS  Google Scholar 

  • Vallee R. B., Di Barmlomeis M. J., and Theurkauf W. E. (1981) A protein kinase bound to the projection portion of MAP2 (microtubule-associated protein 2).J. Cell Biol. 90, 568–576.

    PubMed  CAS  Google Scholar 

  • Viereck C., Tucker R. P., and Matus A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.J. Neurosci. 9, 3547–3557.

    PubMed  CAS  Google Scholar 

  • Voter W. A. and Erickson H. P. (1982) Electron microscopy of MAP 2 (microtubule-associated protein 2).J. Ultrastruct. Res. 80, 374–382.

    PubMed  CAS  Google Scholar 

  • Wordeman L. and Mitchison T. J. (1994) Dynamics of microtubule essembly in vivo, inMicrotubules (Hyams J. S. and Lloyd C. W. (eds.) Wiley-Liss, New York, pp. 287–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafit-Zagardo, B., Kalcheva, N. Making sense of the multiple MAP-2 transcripts and their role in the neuron. Mol Neurobiol 16, 149–162 (1998). https://doi.org/10.1007/BF02740642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740642

Index Entries

Navigation