Skip to main content
Log in

The early intracellular signaling pathway for the insulin/insulin-like growth factor receptor family in the mammalian central nervous system

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several studies support the idea that the polypeptides belonging to the family of insulin and insulin-like growth factors (IGFs) play an important role in brain development and continue to be produced in discrete areas of the adult brain. In numerous neuronal populations within the olfactory bulb, the cerebral and cerebellar cortex, the hippocampus, some diencephalic and brainstem nuclei, the spinal cord and the retina, specific insulin and IGF receptors, as well as crucial components of the intracellular receptor signaling pathway have been demonstrated. Thus, mature neurons are endowed with the cellular machinery to respond to insulin and IGF stimulation. Studies in vitro and in vivo, using normal and transgenic animals, have led to the hypothesis that, in the adult brain, IGF-I not only acts as a trophic factor, but also as a neuromodulator of some higher brain functions, such as long-term potentiation and depression. Furthermore, a trophic effect on certain neuronal populations becomes clearly evident in the ischemic brain or neurodegenerative disorders. Thus, the analysis of the early intracellular signaling pathway for the insulin/IGF receptor family in the brain is providing us with new intriguing findings on the way the mammalian brain is sculpted and operates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo M. L., Shemer J., Roberts C. T. Jr., and LeRoith D. (1993) Insulin and insulin-like growth factor-I induced phosphorylation in neurally derived cells.Ann. NY Acad. Sci. 692, 113–125.

    PubMed  CAS  Google Scholar 

  • Al-Khodairy F. and Carr A. M. (1992) DNA repair mutants defining G2 checkpoint pathways inSchizosaccharomyces pombe.EMBO J. 11, 1343–1350.

    PubMed  CAS  Google Scholar 

  • Alpert S., Hanahan D., and Teitelman G. (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons.Cell 53, 295–308.

    PubMed  CAS  Google Scholar 

  • Altman J. (1992) Programmed cell death: the paths to suicide.Trends Neurol. Sci. 15, 278–280.

    CAS  Google Scholar 

  • Andersson I. K., Edwall D., Norstedt G., Rozell B., Skottner A., and Hansson H.-A. (1988) Differing expression of insulin-like growth factor I in the developing and adult rat cerebellum.Acta Physiol. Scand. 132, 167–173.

    PubMed  CAS  Google Scholar 

  • Ang L. C., Bhaumick B., and Juurlink B. H. J. (1993) Neurite promoting activity of insulin, insulin-like growth factor I and nerve growth factor on spinal motoneurons is astrocyte dependent.Dev. Brain Res. 74, 83–88.

    CAS  Google Scholar 

  • Araki E., Sun X., Haag B. L. III, Chuang L., Zhang Y., Yang-Feng T. L., Morris F. W., and Kahn C. R. (1993) Human skeletal muscle insulin receptor substrate-1. Characterization on the cDNA, gene, and chromosomal localization.Diabetes 42, 1041–1054.

    PubMed  CAS  Google Scholar 

  • Araki E., Lipes M. A., Patti M. E., Bruning J. C., Haag B. I., Johnson R. S., and Kahn C. R. (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene.Nature 7, 43–58.

    Google Scholar 

  • Araujo D. M., Lapchak P. A., Collier B., Chabot J.-G., and Quirion R. (1989) Insulin-like growth factor-I (somatomedin-C) receptors in the rat brain: distribution and interaction with the hippocampal cholinergic system.Brain Res. 484, 130–138.

    PubMed  CAS  Google Scholar 

  • Argetsinger L. S., Hsu G. W., Myers M. G. J., Billestrup N., White M. F., and Carter-Su C. (1995) Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1.J. Biol. Chem. 270, 14,685–14,692.

    CAS  Google Scholar 

  • Ayer-le-Lievre A., Stählbom P. A., and Sara V. R. (1991) Expression of IGF-I and II mRNA in the brain and cranio-facial region of the rat fetus.Development 111, 105–111.

    PubMed  CAS  Google Scholar 

  • Bach M. A., Shen-Orr Z., Lowe W. L., Jr., Roberts C. T. Jr., and LeRoith D. (1991) Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain.Mol. Brain Res. 10, 43–48.

    PubMed  CAS  Google Scholar 

  • Backer J. M., Myers M. G., Shoelson S. E., Chin D. J., Jian Sun X., Miralpeix M., Hu P., Margolis B., Skolnik Y., Schlessinger J., and White M. F. (1992) Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation.EMBO J. 11 3469–3479.

    PubMed  CAS  Google Scholar 

  • Backer J., Liu J. P., Robertson E. J., and Efstratiadis A. (1993) Role of insulin-like growth factors in embryonic and postnatal growth.Cell 75, 73–82.

    Google Scholar 

  • Ballesteros M., Scott C. D., and Baxter R. C. (1990) Developmental regulation of insulin-like growth factor-II/mannose 6-phosphate receptor mRNA in the rat.Biochem. Biophys. Res. Commun. 172, 775–779.

    PubMed  CAS  Google Scholar 

  • Bare D. J., Lauder J. M., Wilkie M. B., and Maness P. F. (1993) p59fyn in rat brain is localized in developing axon tracts and subpopulations of adult neurons and glia.Oncogene 8, 1429–1436.

    PubMed  CAS  Google Scholar 

  • Barnea A. and Cho G. (1993) Basic fibroblast growth factor selectively amplifies the functional state of neurons producing neuropeptide Y but not somatostatin in cultures of fetal brain cells: evidence for a cooperative interaction with insulin-like growth factor I.Endocrinology 133, 1895–1898.

    PubMed  CAS  Google Scholar 

  • Baron-Van Evercooren A., Olichon-Berthe C., Kowalski A., Visciano G., and Van Obberghen E. (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional and cellular analysis.J. Neurosci. Res. 28, 244–253.

    PubMed  CAS  Google Scholar 

  • Bartlett W. P., Li X. S., Williams M., and Benkovic S. (1991) Localization of insulin-like growth factor-1 mRNA in murine central nervous system during postnatal development.Dev. Biol. 147, 239–250.

    PubMed  CAS  Google Scholar 

  • Baskin D. G., Sipols A. F., Schwartz M. W., and White M. F. (1993) Immunocytochemical detection of insulin receptor substrate-1 (IRS-1) in rat brain: colocalization with phosphotyrosine.Regul. Pept. 48, 257–266.

    PubMed  CAS  Google Scholar 

  • Baskin D. G., Schwartz M. W., Sipols A. J., D’Alessio D. A., Goldstein B. J., and White M. F. (1994) Insulin receptor substrate-1 (IRS-1) expression in rat brain.Endocrinology 134 1952–1955.

    PubMed  CAS  Google Scholar 

  • Batistatou A. and Greene L. A. (1991) Auriinitricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity.J. Cell Biol. 115, 461–471.

    PubMed  CAS  Google Scholar 

  • Beck K. D. (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons.Prog. Neurobiol. 44, 497–516.

    PubMed  CAS  Google Scholar 

  • Bohannon N. J., Corp E. S., Wilcox B. J., Figlewicz D. P., Dorsa D. M., and Baskin D. G. (1988) Localization of binding sites for insulin-like growth factor-I (IGF-I) in the rat brain by quantitative autoradiography.Brain Res. 444, 205–213.

    PubMed  CAS  Google Scholar 

  • Bondy C. A. (1991) Transient IGF-I gene expression during the maturation of functionally related central projection neurons.J. Neurosci. 11, 3442–3455.

    PubMed  CAS  Google Scholar 

  • Bondy C. A. and Lee W. (1993a) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain.Ann. NY Acad. Sci. 692, 33–43.

    PubMed  CAS  Google Scholar 

  • Bondy C. A. and Lee W. (1993b) Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development.J. Neurosci. 13, 5092–5104.

    PubMed  CAS  Google Scholar 

  • Bondy C. A., Werner H., Roberts C. T. Jr., and LeRoith D. (1992) Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II.Neuroscience 46, 909–923.

    PubMed  CAS  Google Scholar 

  • Bozyczko-Coyne D., Glicksman M. A., Prantner J. E., McKenna B., Connors T., Friedman C., Dasgupta M., and Neff N. T. (1993) IGF-I supports the survival and/or differentiation of multiple types of central nervous system neurons.Ann. NY Acad. Sci. 692, 311–313.

    PubMed  CAS  Google Scholar 

  • Brown A. L., Graham D. E., Nissley S. P., Hill D. J., Strain A. J., and Rechler M. M. (1986) Developmental regulation of insulin-like growth factor II mRNA in different rat tissues.J. Bio. Chem. 261, 13,144–13,150.

    CAS  Google Scholar 

  • Carson M. J., Behringer R. R., Brinster R. L., and McMorris F. A. (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice.Neuron 10, 729–740.

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos M. A. and Torres-Aleman I. (1993) Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I.Proc. Natl. Acad. Sci. USA 90, 7386–7390.

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos M. A. and Torres-Aleman I. (1994) Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide.Proc. Natl. Acad. Sci. USA 91, 10,203–10,207.

    CAS  Google Scholar 

  • Cheatham B. and Kahn C. R. (1995) Insulin action and the insulin signaling network.Endocrine Rev. 16, 117–142.

    CAS  Google Scholar 

  • Cheatham B., Vlahos C., Cheatham L., Wang L., Blenis J., and Kahn C. R. (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis and glucose transporter translocation.Mol. Cell. Biol. 14, 4902–4911.

    PubMed  CAS  Google Scholar 

  • Chuang L. M., Hausdorff S. F., Myers M. G. J., White M. F., Birnbaum M. J., and Kahn C. R. (1994) Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling inXenopus oocytes.J. Biol. Chem. 269, 27,645–27,649.

    CAS  Google Scholar 

  • Cortizo A. M., van Arnaldo J., Burgess S. K., and Espinal J. (1991) Insulin and IGF-I stimulated RNA synthesis in primary cultures of neuronal cells: involvement of cyclic AMP and protein kinase-C.Acta Pysiol. Pharmalcol. Ther. Latinoamericana 41, 295–307.

    CAS  Google Scholar 

  • Deltour L., Leduque P., Blume N., Madsen O., Dubois P., Jami J., and Bucchini D. (1993) Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo.Proc. Natl. Acad. Sci. USA 90, 527–531.

    PubMed  CAS  Google Scholar 

  • D’Ercole A. J. (1993) Expression of insulin-like growth factor-I in transgenic mice.Ann. NY Acad. Sci. 692, 149–160.

    PubMed  CAS  Google Scholar 

  • D’Ercole A. J., Dai Z., Xing Y., Boney C., Wilkie M. B., Lauder J. M., Han V. K. M., and Clemmons D. R. (1994) Brain growth retardation due to the expression of human insulin-like growth factor binding protein-1 in transgenic mice: an in vivo model for the analysis of igf function in the brain.Dev. Brain Res. 82, 213–222.

    CAS  Google Scholar 

  • DeChiara T. M., Efstratiadis A., and Robertson E. J. (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.Nature 345, 78–80.

    PubMed  CAS  Google Scholar 

  • DeChiara T. M., Robertson E. J., and Efstratiadis A. (1991) Parental imprinting of the mouse insulin-like growth factor II gene.Cell 64, 849–859.

    PubMed  CAS  Google Scholar 

  • De Pablo F. and De la Rosa E. J. (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors.Trends Neurosci. 18, 143–150.

    PubMed  Google Scholar 

  • Devaskar S. U., Singh B. S., Carnaghi L. R., Rajakumar P. A., and Giddings S. J. (1993) Insulin II gene expression in rat central nervous system.Regul. Pep. 48, 55–63.

    CAS  Google Scholar 

  • Devaskar S. U., Giddings S. J., Rajakumar P. A., Carnaghi L. R., Menon R. K., and Zahm D. S. (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells.J. Biol. Chem. 269, 8445–8454.

    PubMed  CAS  Google Scholar 

  • Devaskar S. U., Holekamp N., Karycki L., and Devaskar U. P. (1995) Ontogenesis of the insulin receptors in the rabbit brain.Horm. Res. 24, 319–327.

    Google Scholar 

  • Doré S., Kar S., and Quirion R. (1995a) Evidence for the presence of two distinct insulin-like growth factor (IGF-I and IGF-II) receptors in cultured rat hippocampal neurons and different process of internalization.Neuroscience, in press.

  • Doré S., Krieger C., Kar S., and Quirion R. (1996b) Distribution and levels of insulin-like growth factors (IGF-I and IGF-II) and insulin receptor binding sites in spinal cords of amyotrophic lateral sclerosis (ALS) patients.Mol. Brain Res. 41, 128–223.

    PubMed  Google Scholar 

  • Drago J., Murphy M., Carroll S. M., Harvey A. R., and Bartlett P. F. (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I.Proc. Natl. Acad. Sci. USA 88, 2199–2203.

    PubMed  CAS  Google Scholar 

  • Drakenberg K., Östenson G.-C., and Sara V. R. (1990) Circulating forms and biological activity of intact and truncated insulin-like growth factor-1 (IGF-1) in adult and neonatal rat.Acta Endocrinol. 123, 43–51.

    PubMed  CAS  Google Scholar 

  • Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J., Masiar F., Kan Y. W., Goldfine I. D., Roth R. A., and Rutter W. J. (1985) The human insulin receptor cDNA: the structural basis for hormone activated transmembrane signalling.Cell 40, 747–758.

    PubMed  CAS  Google Scholar 

  • Escobedo J. A., Navankasattusas S., Kavanaugh W. M., Milfay D., Fried V. A., and Williams L. T. (1991) cDNA cloning of a novel 85 kD protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor.Cell 65, 75–82.

    PubMed  CAS  Google Scholar 

  • Fantl W. J., Johnson D. E., and Williams L. T. (1993) Signalling by receptor tyrosine kinases.Ann. Rev. Biochem. 62, 453–481.

    PubMed  CAS  Google Scholar 

  • Feener E. P., Backer J. M., King G. L., Wilden P. A., Sun X., Kahn C. R., and White M. F. (1993) Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor.J. Biol. Chem. 268, 11,256–11,264.

    CAS  Google Scholar 

  • Folli F., Saad M. J. A., Backer J. M., and Kahn C. R. (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat.J. Biol. Chem. 267, 22,171–22,177.

    CAS  Google Scholar 

  • Folli F., Bonfanti L., Renard E., Kahn C. R., and Merighi A. (1994) Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system.J. Neurosci. 14, 6412–6422.

    PubMed  CAS  Google Scholar 

  • Folli F., Patti M. E., Chen C., Ghidella S., Merighi A., and Kahn C. R. (1995) Roles of the insulin-IGF-1 receptor signalling network in the central nervous system.Proc. 77th Ann. Mtg. Endocrine Soc., p. 515 (abstract).

  • Franke T. F., Yang S., Chan T. O., Datta K., Kazlauskas A., Morrison D. K., Kaplan D. R., and Tsichlis P. N. (1995) The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase.Cell 81, 727–736.

    PubMed  CAS  Google Scholar 

  • Gage F. H., Ray, J., and Fisher J. L. (1995) Isolation, characterization, and use of stem cells from the CNS.Ann. Rev. Neurosci. 18, 159–192.

    PubMed  CAS  Google Scholar 

  • Gammeltoft S., Haselbacher G. K., Humbel R. E., Fehlmann M., and Van Obberghen E. (1985) Two types of receptor for insulin-like growth factors in mammalian brain.EMBO J. 4, 3407–3412.

    PubMed  CAS  Google Scholar 

  • Gammeltoft S., Christiensen J., Nielsen F. C., and Verland S. (1991) Insulin-like growth factor II: complexity of biosynthesis and receptor binding, inMolecular Biology and Physiology of Insulin and Insulin-Like Growth Factors (Raizada M. K. and LeRoith D., eds.), Plenum, New York, pp. 31–44.

    Google Scholar 

  • Garcia-Segura L. M., Perez J., Pons S., Rejas M. T., and Torres-Aleman I. (1991) Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain.Brain Res. 560, 167–174.

    PubMed  CAS  Google Scholar 

  • Giacobini M. B., Olson M. J., Hoffer B. J., and Sara V. R. (1990) Truncated IGF-1 exerts trophic, effects on fetal brain tissue grafts.Exp. Neurol. 108, 33–39.

    PubMed  CAS  Google Scholar 

  • Girault J. A., Chamak B., Bertuzzi G., Tixier H., Wang J. K., Pang D. T., and Greengard P. (1992) Protein phosphotyrosine in mouse brain: developmental changes and regulation by epidermal growth factor, type I insulin-like growth factor, and insulin.J. Neurochem. 58, 518–528.

    PubMed  CAS  Google Scholar 

  • Gluckman P. D., Guan J., Beilharz E. J., Klempt N. D., Klempt M., Miller O., Sirimanne E., Dragunow M., and Williams C. E. (1993) The role of the insulin-like growth factor system in neuronal rescue.Ann. NY Acad. Sci. 262, 138–148.

    Google Scholar 

  • Gout I., Dhand R., Hiles I. D., Fry M. J., Panayotou G., Das P., Truong O., Totty N. F., Hsuan J., and Booker G. W. (1993) The GTPase dynamin binds to and is activated by a subset of SH3 domains.Cell 75, 25–36.

    PubMed  CAS  Google Scholar 

  • Grant S. G., O’Dell T. J., Karl K. A., Stein P. L., Soriano P., and Kandel E. R. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice.Science 258, 1903–1910.

    PubMed  CAS  Google Scholar 

  • Green B. N., Jones S. B., Streck R. D., Wood T. L., Rotwein P., and Pintar J. E. (1994) Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development.Endocrinology 134, 954–962.

    PubMed  CAS  Google Scholar 

  • Guthrie K. M., Wilson D. A., and Leon M. (1990) Early unilateral deprivation modifies olfactory bulb function.J. Neurosci. 10, 3402–3412.

    PubMed  CAS  Google Scholar 

  • Hansson H.-A., Nilsson A., Isgaard J., Billing H., Isaksson O., Skottner A., Andersson I. K., and Rozell B. (1988) Immunohistochemical localization of insulin-like growth factor I in the adult rat.Histochemistry 89, 403–410.

    PubMed  CAS  Google Scholar 

  • Havrankova J., Roth J., and Brownstein M. (1978) Insulin receptors are widely distributed in the central nervous system of the rat.Nature 272, 827–829.

    PubMed  CAS  Google Scholar 

  • Havrankova J., Brownstein M., and Roth J. (1981) Insulin and insulin receptors in rodent brain.Diabetologia 20, 268–273.

    PubMed  CAS  Google Scholar 

  • Heidenreich K. A., Toledo S. P., and Kenner K. A. (1991) Regulation of protein phosphorylation by insulin and insulin like growth factors in cultured fetal neurons.Adv. Exp. Med. Biol. 293, 379–384.

    PubMed  CAS  Google Scholar 

  • Hiles I. D., Otsu M., Volinna S., Fry M. J., Gout I., Dhand R., Panayotou G., Ruiz-Larrea F., Thompson A., Totty N. F., Hsuan J., Courtneidge S. A., Parker P. J., and Waterfield M. D. (1992) Phosphatidylinositol 3-kinase: structure and expression of the 110 kD catalytic subunit.Cell 70, 419–429.

    PubMed  CAS  Google Scholar 

  • Hill J. M., Lesniak M. A., Pert C. B., and Roth J. (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas.Neuroscience 17, 1127–1138.

    PubMed  CAS  Google Scholar 

  • Hökfelt T., Johansson O., Ljungdahl Å., Lundberg J. M., and Schultzberg M. (1980) Peptidergic neurones.Nature 284, 515–521.

    PubMed  Google Scholar 

  • Hubbard S. R., Wei L., Ellis L., and Hendrickson W. A. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor.Nature 372, 746–754.

    PubMed  CAS  Google Scholar 

  • Hung J., Granner T. C., Emos K. P., Kazlauskas A., and Blenis J. (1994) PDGF and insulin-dependent pp70S6k activation mediated by phosphatidylinositol 3-OH kinase.Nature 370, 71–75.

    Google Scholar 

  • Hunter T. (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase.Cell 83, 1–4.

    PubMed  CAS  Google Scholar 

  • Hynes M. A., Brooks P. J., Van Wyk J. J., and Lund P. K. (1988) Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain.Mol. Endocrinol. 2, 47–54.

    PubMed  CAS  Google Scholar 

  • Imamoto A. and Soriano P. (1993) Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice.Cell 73, 1117–1124.

    PubMed  CAS  Google Scholar 

  • Irminger J., Rosen K. M., Humbel R. E., and Villa-Komaroff L. (1987) Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5′ untranslated, regions.Proc. Natl. Acad. Sci. USA 84, 6330–6333.

    PubMed  CAS  Google Scholar 

  • Ito M. (1989) Long-term depression.Ann. Rev. Neurosci. 12, 85–102.

    PubMed  CAS  Google Scholar 

  • Jones J. I. and Clemmons D. R. (1995) Insulin-like growth factors and their binding proteins: biological actions.Endocr. Rev. 16, 3–34.

    PubMed  CAS  Google Scholar 

  • Kar S., Chabot J.-G., and Quirion R. (1993) Quantitative autoradiographic localization of [125I] insulin-like growth factor I, [125I] insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain.J. Comp. Neurol. 333, 375–397.

    PubMed  CAS  Google Scholar 

  • Kasuga M., Hedo J. A., Yamada K. M., and Kahn C. R. (1982a) The structure of the insulin receptor and its subunits: evidence for multiple non-reduced forms and a 210K possible proreceptor.J. Biol. Chem. 257, 10,392–10,399.

    CAS  Google Scholar 

  • Kasuga M., Karlsson F. A., and Kahn C. R. (1982b) Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor.Science 215, 185–187.

    PubMed  CAS  Google Scholar 

  • Kasuga M., Zick Y., Blithe D. L., Crettaz M., and Kahn C. R. (1982c) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system.Nature 298, 667–669.

    PubMed  CAS  Google Scholar 

  • Konishi Y., Takahashi K., Chui D. H., Rosenfeld R. G., Himeno M., and Tabira T. (1994) Insulin-like growth factor II promotes in vitro cholinergic development of mouse septal neurons: comparison with the effects of insulin-like growth factor I.Brain Res. 649, 53–61.

    PubMed  CAS  Google Scholar 

  • Kornfeld S. (1987) Trafficking of lysosomal enzymes.FASEB J. 1, 462–468.

    PubMed  CAS  Google Scholar 

  • Kornfeld S. (1992) Structure and function of the mannose 6-phosphate/insulin-like growth factor II receptors.Ann. Rev. Biochem. 61, 307–330.

    PubMed  CAS  Google Scholar 

  • Kovacina K. S. and Roth R. A. (1995) Characterization of the endogenous insulin receptor-related receptor in neuroblastomas.J. Biol. Chem. 270, 1881–1887.

    PubMed  CAS  Google Scholar 

  • Kuhne M. R., Pawson T., Lienhard G. E., and Feng G. S. (1993) The insulin receptor substrate-1 associates with the SH2-containing phosphotyrosine phosphatase 5YP.J. Biol. Chem. 268, 11,479–11,481.

    CAS  Google Scholar 

  • Lammers R., Gray A., Schlessinger J., and Ullrich A. (1989) Differential signaling potential of insulin and IGF-I receptor cytoplasmic domains.EMBO J. 8, 1369–1375.

    PubMed  CAS  Google Scholar 

  • Lee J. E., Pintar J., and Efstratiadis A. (1990) Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis.Development 110, 151–159.

    PubMed  CAS  Google Scholar 

  • Lee W.-H., Michels K. M., and Bondy C. A. (1993) Localization of insulin-like growth factor binding protein 2 mRNA during postnatal brain development: correlation with IGF-I and II.Neuroscience 53, 251–265.

    PubMed  CAS  Google Scholar 

  • LeRoith D., Werner H., Beitner-Johnson D., and Roberts C. T. Jr. (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor.Endocr. Rev. 16, 143–163.

    PubMed  CAS  Google Scholar 

  • Lesniak M. A., Hill J. M., Kiess W., Rojeski M., Pert C. B., and Roth J. (1988) Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin.Endocrinology 123, 2089–2099.

    PubMed  CAS  Google Scholar 

  • Liu J., Baker J., Perkins A. S., Robertson E. J., and Efstratiadis A. (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).Cell 75, 59–72.

    PubMed  CAS  Google Scholar 

  • Logan A., Gonzales A. M., Hill D. J., Berry M., Gregson N. A., and Baird A. (1994) Coordinated pattern of expression and localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 in the adult rat brain.Endocrinology 135, 2255–2264.

    PubMed  CAS  Google Scholar 

  • Lowenstein E. J., Daly R. G., Batzer A. G., Li W., Margolis B., Lammers R., Ullrich A., Skolnik E. Y., Bar-Sagi D., and Schlessinger J. (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling.Cell 70, 431–442.

    PubMed  CAS  Google Scholar 

  • Lund P. K., Moats-Staats B. M., Hynes M. A., Simmons J. G., Jansen M., D’Ercole A. J., and Van Wyk J. J. (1986) Somatomedin-C/insulin-like growth factor I and insulin-like growth factor II mRNAs in rat fetal and adult tissues.J. Biol. Chem. 261, 14,539–14,544.

    CAS  Google Scholar 

  • Ma Z. Q., Santagati S., Patrone C., Pollio G., Vegeto E., and Maggi A. (1994) Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastoma cell line SK-ER3.Mol. Endocrinol. 8, 910–918.

    PubMed  CAS  Google Scholar 

  • Marks J. L., Porte D., Stahl W. L., and Baskin D. G. (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization.Endocrinology 127, 3234–3236.

    PubMed  CAS  Google Scholar 

  • Marks J. L., Porte D., and Baskin D. G. (1991) Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization.Mol. Endocrinology 5, 1158–1168.

    CAS  Google Scholar 

  • Massague J., Pilch P. F., and Czech M. P. (1982) Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries.Proc. Natl. Acad. Sci. USA 77, 7137–7141.

    Google Scholar 

  • Matsuo K., Niwa M., Kurihara M., Shigematsu K., Yamashita S., Ozaki M., and Nagataki S. (1991) Receptor autoradiographic analysis of insulin-like growth factor-I (IGF-I) binding sites in rat forebrain and pituitary gland.Cell. Mol. Neurobiol. 9, 357–367.

    Google Scholar 

  • McMorris F. A., Mozell R. L., Carson M. J., Shinar Y., Meyer R. D., and Marchetti N. (1993) Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors.Ann. NY Acad. Sci. 262, 321–334.

    Google Scholar 

  • McPherson P. S., Czernik A. J., Chilcote T. J., Onofri F., Benfenati F., Greengard P., Schlessinger J., and DeCamilli P. (1994a) Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I.Proc. Natl. Acad. Sci. USA 91, 6486–6490.

    PubMed  CAS  Google Scholar 

  • McPherson P. S., Takei K., Schmid S. L., and DeCamilli P. (1994b) p145, a major grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation.J. Biol. Chem. 269, 30,132–30,139.

    CAS  Google Scholar 

  • Mermaridis D. G., Morse D. E., Pansky B., and Budd G. C. (1990) Insulin immunoreactivity in the fetal and neonatal rat retina.Neurosci. Lett. 118, 116–119.

    Google Scholar 

  • Mozell R. L. and McMorris F. A. (1991) Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures.J. Neurosci. Res. 30, 382–390.

    PubMed  CAS  Google Scholar 

  • Myers M. G., Jr., Granner T. C., Wang, L. M., Sun X. J., Pierce J. H., Blenis J., and White M. F. (1994) Insulin receptor substrate-1 mediates phospatidylinositol 3′ kinase and p70S6K signaling during insulin, insulin-like growth factor 1 and interleukin-4 stimulation.J. Biol. Chem. 269, 28,783–28,789.

    CAS  Google Scholar 

  • Myers M. G. J., Backer J. M., Sun X., Shoelson S. E., Hu, P., Schlessinger, J., Yoakim M., Schaffhausen B., and White M. F. (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85.Proc. Natl. Acad. Sci. USA 89, 10,350–10,354.

    CAS  Google Scholar 

  • Myers M. G. J., Sun X., Cheatham B., Jachna B. R., Glasheen E. M., Backer J. M., and White M. F. (1993) IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase.Endocrinology 132, 1421–1430.

    PubMed  CAS  Google Scholar 

  • Myers M. G. J., Sun X., and White M. F. (1995) The IRS-1 signaling system.TIBS 19, 289–294.

    Google Scholar 

  • Nada S., Yagi T., Takeda H., Tokunaga T., Nakagawa H., Ikawa Y., Okada M., and Aizawa S. (1993) Constitutive activation of Src family kinases in mouse embryos that lack Csk.Cell 73, 1125–1135.

    PubMed  CAS  Google Scholar 

  • Nehlig A., De Vasconcelos A. P., and Boyet S. (1988) Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during post-natal development.J. Neurosci. 8, 2321–2333.

    PubMed  CAS  Google Scholar 

  • Nielsen F. C. and Gammeltoft S. (1990) Mannose-6-phosphate stimulates proliferation of neuronal precursor cells.FEBS Lett. 262, 142–144.

    PubMed  CAS  Google Scholar 

  • Nielsen F. C., Wang E., and Gammeltoft S. (1991) Receptor binding, endocytosis, and mitogenesis of insulin-like growth factors I and II in fetal rat brain neurons.J. Neurochem. 56, 12–21.

    PubMed  CAS  Google Scholar 

  • Nieto-Bona M. P., Garcia-Segura L. M., and Torres-Aleman I. (1993) Orthograde transport and release of insulin-like growth factor I from the inferior olive to the cerebellum.J. Neurosci. Res. 36, 520–527.

    PubMed  CAS  Google Scholar 

  • Noguchi T., Kurata L. M., and Sugisaki T. (1987) Presence of somatomedin-C immunoreactive substance in the central nervous system: immunohistochemical mapping studies.Neuroendocrinology 46, 277–282.

    PubMed  CAS  Google Scholar 

  • Ocrant I., Valentino K. L., Eng L. F., Hintz R. L., Wilson D. M., and Rosenfeld R. N. (1988) Structural and immunohistochemical characterization of insulin-like growth factor I and II receptors in the murine central nervous system.Endocrinology 123, 1023–1034.

    PubMed  CAS  Google Scholar 

  • Ocrant I. (1993) Insulin-like growth factor binding proteins in nervous-tissue-derived cells.Ann. NY Acad. Sci. 692, 44–50.

    PubMed  CAS  Google Scholar 

  • O’Dell T. J., Kandel E. R., and Grant S. G. N. (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors.Letters to Nature 353, 558–560.

    CAS  Google Scholar 

  • Okada M., Nada S., Yamanashi Y., Yamamoto T., and Nakagawa H. (1991) CSK: a protein-tyrosine kinase involved in regulation of src family kinases.J. Biol. Chem. 266, 24,249–24,252.

    CAS  Google Scholar 

  • Olson J. A. J., Shiverick K. T., Ogilvie S., Buhi W. C., and Raizada M. K. (1991) Developmental expression of rat insulin-like growth factor binding protein-2 by astrocytic glial cells in culture.Endocrinology 129, 1066–1074.

    PubMed  CAS  Google Scholar 

  • Otsu M., Hiles I., Gout I., Fry M. J., Ruis-Larrea F., Panayotou G., Thompson A., Dhand R., Hsuan J., Totty N., Smith A. D., Morgan S. J., Courtneidge S. A., Parker P. J., and Waterfield M. D. (1991) Characterization of two 85 kD proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes and PI3-kinase.Cell 65, 91–104.

    PubMed  CAS  Google Scholar 

  • Park G. H. and Buetow D. E. (1991) Genes for insulin-like growth factors I and II are expressed in senescent rat tissues.Gerontology 37, 310–316.

    PubMed  CAS  Google Scholar 

  • Patti M., Sun X., Bruening J. C., Araki E., Lipes M. A., White M. F., and Kahn C. R. (1995) 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.J. Biol. Chem. 270, 24,670–24,673.

    CAS  Google Scholar 

  • Pawson T. (1995) Protein modules and signalling networks.Nature 373, 573–580.

    PubMed  CAS  Google Scholar 

  • Perez-Villamil B., De la Rosa E. J., Morales A. V., and De Pablo F. (1994) Developmentally regulated expression of the preproinsulin gene in the chicken embryo during gastrulation and neurulation.Endocrinology 135, 2342–2350.

    PubMed  CAS  Google Scholar 

  • Petruzzelli L. M., Gangaly S., Smith C. R., Cobb M. H., Rubin C. S., and Rosen O. M. (1982) Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta.Proc. Natl. Acad. Sci. USA 79, 6792–6796.

    PubMed  CAS  Google Scholar 

  • Pillay T. S., Whittaker J., Lammers R., Ullrich A., and Siddle K. (1991) Multisite serine phosphorylation of the insulin and IGF-I receptors in transfected cells.FEBS Lett. 288, 206–211.

    PubMed  CAS  Google Scholar 

  • Pomerance M., Gavaret J., Jacquemin C., Matricon C., Toru-Delbauffe D., and Pierre M. (1988) Insulin and insulin-like growth factor I receptors during postnatal development in the rat brain.Dev. Brain Res. 62, 169–175.

    Google Scholar 

  • Pons S. and Torres-Aleman I. (1992) Basic fibroblast growth factor modulates insulin-like growth factor-I, its receptor, and its binding proteins in hypothalamic cell cultures.Endocrinology 131, 2271–2278.

    PubMed  CAS  Google Scholar 

  • Pons S., Asano T., Glasheen E. M., Miralpeix M., Weiland A., Zhang Y., Myers M. G. J., Sun X., and White M. F. (1995) The structure and function of p55pik reveals a new regulatory subunit for the phosphatidyinositol-3 kinase.Mol. Cell. Biol. 15, 4453–4465.

    PubMed  CAS  Google Scholar 

  • Posner B. I., Kelly P. A., Shiu R. P. C., and Friesen H. G. (1974) Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variations and characterization.Endocrinology 95, 521–531.

    PubMed  CAS  Google Scholar 

  • Puro D. G. and Agardh E. (1984) Insulin-mediated regulation of neuronal maturation.Science 225, 1170–1172.

    PubMed  CAS  Google Scholar 

  • Raizada M. K. (1991) Insulin-like growth factor I: a possible modulator of intercellular communication in the brain, inMolecular Biology and Physiology of Insulin and Insulin-Like Growth Factors (Raizada M. K. and LeRoith D., eds.), Plenum, New York, pp. 493–505.

    Google Scholar 

  • Reinhardt R. R., Chin E., Zhang B., Roth R. A., and Bondy C. A. (1994) Selective coexpression of insulin receptor-related receptor (IRR) and TRK in NGF-sensitive neurons.J. Neurosci. 14, 4674–4683.

    PubMed  CAS  Google Scholar 

  • Rothenberg P. L., Lane W. S., Karasik A., Backer J., White M., and Kahn C. R. (1991) Purification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase.J. Biol. Chem. 266, 8302–8311.

    PubMed  CAS  Google Scholar 

  • Rothwein P., Burgess S. K., Milbrandt J. D., and Krause J. E. (1988) Differential expression of insulin-like growth factor genes in rat central nervous systemProc. Natl. Acad. Sci. USA 85, 265–269.

    Google Scholar 

  • Russo V. C. and Werther G. A. (1994) Des (1–3) IGF-I potently enhances differentiated cell growth in olfactory bulb organ culture.Growth Factors 11, 301–311.

    PubMed  CAS  Google Scholar 

  • Saltiel A. R. and Ohmichi M. (1993) Pleiotropic signaling from receptor tyrosine kinases.Curr. Opin. Neurobiol. 3, 352–359.

    PubMed  CAS  Google Scholar 

  • Sara V. R. and Carlsson-Swirut C. (1990) Insulin-like growth factors in the central nervous system: biosynthesis and biological role, inGrowth Factors: From Genes to Clinical Application (Sara V. R., Hall K., and Löw H., eds.), Raven, New York, pp. 179–199.

    Google Scholar 

  • Sara V. R. and Hall K. (1990) Insulin-like growth factors and their binding proteins.Physiol. Rev. 70, 591–605.

    PubMed  CAS  Google Scholar 

  • Sara V. R., Hall K., Holtz H. V., Humbel R. E., Sjogren B., and Wetterberg L. (1982) Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) and insulin throughout the adult human brain.Neurosci. Lett. 34, 39–44.

    PubMed  CAS  Google Scholar 

  • Sara V. R., Carlsson-Swirut C., Andersson C., Hall E., Sjogren B., Holmgren A., and Jornvall H. (1986) Characterization of somatomedins from human brain: identification of a variant form of IGF-I.Proc. Natl. Acad. Sci. USA 83, 4904–4907.

    PubMed  CAS  Google Scholar 

  • Sara V. R., Carlsson-Swirut C., Bergman T., Jornvall H., Roberts P. J., Crawford M., Hakansson N., Civalero I., and Nordberg A. (1989) Identification of gly-pro-glu (GPE) the aminoterminal tripeptide of IGF-I which is truncated in brain, as a novel neuroactive peptide.Biochem. Biophys. Res. Commun. 165, 766–771.

    PubMed  CAS  Google Scholar 

  • Sara V. R., Sandberg-Nordqvist A., Carlsson-Swirut C., Bergman T., and Ayer-LeLievre C. (1991) Neuroactive products of IGF-I and IGF-2 gene expression in the CNS, inMolecular Biology and Physiology of Insulin and Insulin-like Growth Factors (Raizada M. K. and LeRoith D., eds.), Plenum, New York, pp. 439–448.

    Google Scholar 

  • Savitsky K., Bar-Shira A., Gilad S., Rotman G., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S., Ashkenazi M., Pecker I., Frydman M., Harnik R., Patanjali S. R., Simmons A., Clines G. A., Sartiel A., Gatti R. A., Chessa L., Sanal O., Lavin M. F., Jaspers N. G. J., Taylor A. M. R., Arlett C. F., Miki T., Weissman S. M., Lovett M., Collins F. S., and Shiloh Y. (1995) A single ataxia telangectasia gene with a product similar to PI 3-kinase.Science 268, 1749–1753.

    PubMed  CAS  Google Scholar 

  • Scavo L., Shuldiner A. R., Serrano J., Dashner R., Roth J., and De Pablo F. (1991) Genes encoding receptors for insulin and insulin-like growth factor I are expressed inXenopus oocytes and embryos.Proc. Natl. Acad. Sci. USA 88, 6214–6218.

    PubMed  CAS  Google Scholar 

  • Schumacher R., Mosthaf L., Schlessinger J., Brandenburg D., and Ullrich A. (1991) Insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors.J. Biol. Chem. 266, 19,288–19,295.

    CAS  Google Scholar 

  • Shemer J., Adamo M., Wilson G. L., Heffez D., Zick Y., and LeRoith D. (1987a) Insulin and insulin-like growth factor-I stimulate a common endogenous phosphoprotein substrate (pp185) in intact neuroblastoma cells.J. Biol. Chem. 262, 15,476–15,482.

    CAS  Google Scholar 

  • Shemer J., Raizada M. K., Masters B. A., Ota A., and Lerdith D. (1987b) Insulin-like growth factor-I receptors in neuronal and glial cells.J. Biol. Chem. 262, 7693–7699.

    PubMed  CAS  Google Scholar 

  • Shemer J., Adamo M., Raizada M. K., Heffez D., Zick Y., and Le Roith D. (1989) Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture.J. Mol. Neurosci. 1, 3–8.

    PubMed  CAS  Google Scholar 

  • Skolnik E. Y., Margolis B., Mohammadi M., Lowenstein E., Fischer R., Drepps A., Ullrich A., and Schlessinger J. (1991) Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases.Cell 65, 83–90.

    PubMed  CAS  Google Scholar 

  • Smith C. B. (1991) The measurement of regional rates of cerebral protein synthesis.Neurochem. Res. 16, 1037–1045.

    PubMed  CAS  Google Scholar 

  • Sokoloff L. (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose.J. Cerebral Blood Flow Metab. 1, 7–36.

    CAS  Google Scholar 

  • Soos M. A., Field C. E., and Siddle K. (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity.Biochem. J. 290, 419–426.

    PubMed  CAS  Google Scholar 

  • Stylianopoulou F., Efstratiadis A., Herbert J., and Pintar J. (1988a) Pattern of the insulin-like growth factor II gene expression during rat embryogenesis.Development 103, 497–506.

    PubMed  CAS  Google Scholar 

  • Stylianopoulou, F., Herbert J., Soares M. B., and Efstratiadis A. (1988b) Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system.Proc. Natl. Acad. Sci. 85, 141–144.

    PubMed  CAS  Google Scholar 

  • Sullivan K. A. and Feldman E. L. (1994) Immunohistochemical localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 during development in the rat brain.Endocrinology 135, 540–547.

    PubMed  CAS  Google Scholar 

  • Sun X., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., and White M. F. (1991) The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein.Nature 352, 73–77.

    PubMed  CAS  Google Scholar 

  • Sun X., Miralpeix M., Myers M. G. J., Glasheen E. M., Backer J. M., Kahn C. R., and White M. F. (1992) The expression and function of IRS-1 in insulin signal transmission.J. Biol. Chem. 267, 22,662–22,672.

    CAS  Google Scholar 

  • Sun X., Crimmins D. L., Myers M. G. J., Miralpeix M., and White M. F. (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1.Mol. Cell. Biol. 13, 7418–7428.

    PubMed  CAS  Google Scholar 

  • Sun X. J., Wang L., Zhang Y., Yenush L., Myers M. G., Jr., Giasheen E., Lane W. S., Pierce J. H., and White M. F. (1995) Role of IRS-2 in insulin and cytokine signalling.Nature 377, 173–177.

    PubMed  CAS  Google Scholar 

  • Takei K., McPherson P. S., Schmid S. L., and De Camilli P. (1995) Tubular membrane invaginations coated by dynsmin ring are induced by GTP-ase in nerve terminals.Nature 374, 186–190.

    PubMed  CAS  Google Scholar 

  • Tamemoto H., Kadowaki T., Tobe K., Yagi T., Sakura H., Hayakawa T., Terauchi Y., Ueki K., Kaburagi Y., Satoh S., Sekihara H., Yoshioka S., Horikoshi H., Furuta Y., Ikawa Y., Kasuga M., Yazaki Y., and Aizawa S. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1.Nature 372, 182–186.

    PubMed  CAS  Google Scholar 

  • Terlau H. and Seifert W. (1989) Influence of epidermal growth factor on long-term potentiation in hippocampal slice.Brain Res. 484, 352–356.

    PubMed  CAS  Google Scholar 

  • Terlau H. and Seifert W. (1990) Fibroblast growth factor enhances long-term potentiation in the hippocampal slice.Eur. J. Neurosci. 2, 973–977.

    PubMed  Google Scholar 

  • Tornqvist H. E. and Avruch J. (1988) Relationship of site-specific tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity.J. Biol. Chem. 263, 4593–4601.

    PubMed  CAS  Google Scholar 

  • Tornqvist H. E., Gunsalus J. R., Nemenoff R. A., Frackelton A. R., Pierce M. W., and Avruch J. (1988) Identification of the insulin receptor tyrosine residues undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells.J. Biol. Chem. 263, 350–359.

    PubMed  CAS  Google Scholar 

  • Treadway J. L., Morrison B. D., Soos M. A., Siddle K., Olefsky J., Ullrich A., McClain D. A., and Pessin J. E. (1991) Transdominant inhibition of tyrosine kinase activity in mutant insulin insulin-like growth factor I hybrid receptors.Proc. Natl. Acad. Sci. USA 88, 214–218.

    PubMed  CAS  Google Scholar 

  • Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y., Tsubokawa M., Mason A., Seeburg P. H., Grunfeld C., Rosen O. M., and Ramachandran J. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.Nature 313, 756–761.

    PubMed  CAS  Google Scholar 

  • Ullrich A., Gray A., Tam A. W., Yang-Feng T. L., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E., Jacobs S., Franke U., Ramachandran J., and Fujita-Yamaguchi Y. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity.EMBO J. 5, 2503–2512.

    PubMed  CAS  Google Scholar 

  • Umemori H., Sato S., Yagi T., Aizawa S., and Yamamoto T. (1994) Initial events of myelination involve Fyn tyrosine kinase signalling.Nature 367, 572–576.

    PubMed  CAS  Google Scholar 

  • Unger J., McNeill T. H., Moxley R. T. III, White M., Moss A., and Livingston J. N. (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain.Neuroscience 31, 143–157.

    PubMed  CAS  Google Scholar 

  • Unger J. W., Livingston J. N., and Moss A. M. (1991a) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects.Prog. Neurobiol. 36, 343–362.

    PubMed  CAS  Google Scholar 

  • Unger J. W., Moss A. M., and Livingston J. N. (1991b) Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat.Neuroscience 42, 853–861.

    PubMed  CAS  Google Scholar 

  • Valentino K. L., Pham H., Ocrant I., and Rosenfeld R. G. (1988) Distribution of insulin-like growth factor II receptor immunoreactivity in rat tissues.Endocrinology 122, 2753–2763.

    PubMed  CAS  Google Scholar 

  • Valentino K. L., Ocrant I., and Rosenfeld R. G. (1990) Developmental expression of insulin-like growth factor II receptor immunoreactivity in the rat central nervous system.Endocrinology 126, 914–920.

    PubMed  CAS  Google Scholar 

  • Varticovski L., Harrison-Findik D., Keeler M. L., and Susa M. (1994) Role of PI 3-kinase in mitogenesis.Biochem. Biophys. Acta 1226, 1–11.

    PubMed  CAS  Google Scholar 

  • Wang L. M., Keegan A. D., Paul W. E., Heidaran M. A., Gutkind J. S., and Pierce J. H. (1992) IL-4 activates a distinct signal transduction cascade from IL-3 in factor dependent myeloid cells.EMBO J. 11, 4899–4908.

    PubMed  CAS  Google Scholar 

  • Wang L. M., Keegan A. D., Li W., Lienhard G. E., Pacini S., Gutkind J. S., Myers M. G. J., Sun X., White M. F., Aaronson S. A., Paul W. E., and Pierce J. H. (1993a) Common elements in IL4 and insulin signaling pathways in factor dependent hematopoietic cells.Proc. Natl. Acad. Sci. USA 90, 4032–4036.

    PubMed  CAS  Google Scholar 

  • Wang L. M., Myers M. G. J., Sun X., Aaronson S. A., White M. F., and Pierce J. H. (1993b) IRS-1: essential for insulin and IL-4-stimulated mitogenesis in hematopoietic cells.Science 261, 1591–1594.

    PubMed  CAS  Google Scholar 

  • Welham M. J., Learmont L., Bone H., and Schrader J. W. (1995) Interleukine-13 signal transduction in linphohemopoietic cells: similarities and differences in signal transduction with interleukin-4 and insulin.J. Biol. Chem. 270, 12,286–12,296.

    CAS  Google Scholar 

  • Werner H., Raizada M. K., Mudd L. M., Foyt H. F., Simpson I. A., Roberts C. T., Jr., and Le Roith D. (1989a) Regulation of rat brain/hepG2 glucose transporter gene expression by insulin and IGF-I in primary cultures of neuronal and glial cells.Endocrinology 125, 314–320.

    PubMed  CAS  Google Scholar 

  • Werner H., Woloschak M., Adamo M., Shen-Orr Z., Roberts C. T., Jr., and LeRoith D. (1989b) Developmental regulation of the rat insulin-like growth factor I receptor gene.Proc. Natl. Acad. Sci. USA 86, 7451–7455.

    PubMed  CAS  Google Scholar 

  • Werner H., Roberts C. T., Jr., Raizada M. K., Bondy C. A., Adamo M., and Le Roith D. (1993) Developmental regulation of the insulin-like growth factor receptors in the central nervous system, inGrowth Factors and Hormones (Zagon I. S. and McLaughlin P. J., eds.), Chapman & Hall, New York, 109–127.

    Google Scholar 

  • Werther G. A., Hogg A., Oldfield B. J., McKinley M. J., Figdor R., and Mendelsohn F. A. O. (1989) Localization and characterization of IGF-I receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry a distinct distribution from insulin receptors.J. Neuroendocrinol. 1, 369–377.

    CAS  Google Scholar 

  • White M. F. and Kahn C. R. (1994) The insulin signaling system.J. Biol. Chem. 269, 1–5.

    PubMed  CAS  Google Scholar 

  • White M. F., Maron R., and Kahn C. R. (1985) Insulin rapidly stimulates tyrosine phosphorylation of aM r 185,000 protein in intact cells.Nature 318, 183–186.

    PubMed  CAS  Google Scholar 

  • White, M. F., Shoelson S. E., Keutmann H., and Kahn C. R. (1988a) A cascade of tyrosine autophosphorylation in the β-subunit activates the insulin receptor.J. Biol. Chem. 263, 2969–2980.

    PubMed  CAS  Google Scholar 

  • White M. F., Livingston J. N., Backer J. M., Lauris V., Dull T. J., Ullrich A., and Kahn C. R. (1988b) Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity.Cell 54, 641–649.

    PubMed  CAS  Google Scholar 

  • Wilden P. A., Kahn C. R., Siddle K., and White M. F. (1992a) Insulin receptor kinase domain autophosphorylation regulates receptor enzymatic function.J. Biol. Chem. 267, 16,660–16,668.

    CAS  Google Scholar 

  • Wilden P. A., Siddle K., Haring E., Backer J. M., White M. F., and Kahn C. R. (1992b) The role of insulin receptor kinase domain autophosphorylation in receptor-mediated activities.J. Biol. Chem. 267, 13,719–13,727.

    CAS  Google Scholar 

  • Wolf G., Trüb T., Ottinger E., Groninga L., Lynch A., White M. F., Miyazaki M., Lee J., and Shoelson S. E. (1995) PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities.J. Biol. Chem. 370, 27,407–27,410.

    Google Scholar 

  • Wozniak M., Rydzewski B., Baker S. P., and Raizada M. K. (1993) The cellular and physiological actions of insulin in the central nervous system.Neurochem. Int. 22, 1–10.

    PubMed  CAS  Google Scholar 

  • Yagi T., Aizawa S., Tokunaga T., Shigetani Y., Takeda N., and Ikawa Y. (1995) A role for fyntyrosine kinase in the suckling behaviour of neonatal mice.Nature 366, 742–745.

    Google Scholar 

  • Yamaguchi F., Itano T., Mizobuchi M., Miyamoto O., Janjua N. A., Matsui H., Tokuda M., Ohmoto T., Hosokawa K., and Hatase O. (1990) Insulin-like growth factor I (IGF-I) distribution in the tissue and extracellular compartment in different regions of rat brain.Brain Res. 533, 344–347.

    PubMed  CAS  Google Scholar 

  • Yao R. and Cooper G. M. (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor.Science 267, 2003–2006.

    PubMed  CAS  Google Scholar 

  • Yao D., Liu X., Hudson L. D., and De F. Webster H. (1995) Insulin-like growth factor I treatment reduces demyelination and up-regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis.Proc. Natl. Acad. Sci. USA 92, 6190–6194.

    PubMed  CAS  Google Scholar 

  • Ye P., Carson J., and D’Ercole A. J. (1995) In vivo actions of insulin-like growth-factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice.J. Neurosci. 15, 7344–7356.

    PubMed  CAS  Google Scholar 

  • Young W., Kuhar M., Roth J., and Brownstein M. (1980) Radiohistochemical localization of insulin receptors in the adult and developing rat brain.Neuropeptides 1, 15–22.

    CAS  Google Scholar 

  • Zachenfels K., Oppenheim R. W., and Roher H. (1995) Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons.Neuron 14, 731–741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folli, F., Ghidella, S., Bonfanti, L. et al. The early intracellular signaling pathway for the insulin/insulin-like growth factor receptor family in the mammalian central nervous system. Mol Neurobiol 13, 155–183 (1996). https://doi.org/10.1007/BF02740639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740639

Index Entries

Navigation