Skip to main content
Log in

Clonality studies in the analysis of adrenal medullary proliferations: Application principles and limitations

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Clonality remains as the hallmark of neoplasms. A dual genetic approach using markers nonrelated (e.g., X-chromosome inactivation assays) and related to the malignant transformation (such as loss of heterozygosity analyses of tumor-suppressor genes) would provide useful clonality information from early and advanced tumor stages, respectively. Tumor progression and clonal selection would result in genetic instability and heterogeneous expression of those molecular markers related to the malignant pathway. Therefore, only the coexistence of multiple genetic abnormalities would support the clonal nature as an expression of convergent cell selection. Considering those facts, the currently available evidence on tumorigenesis and clonality in the adrenal medulla can be summarized as follows:

  1. 1.

    Multistep tumorigenesis defines the evolution of pheochromocytomas, as evidenced by the presence of several genetic alterations.

  2. 2.

    Both the significant association of nonrandom genetic alterations (specially 1p and 22q interstitial deletions) and the topographic accumulation of genetic deletions at the peripheral tumor compartment support a convergent clone selection for these neoplasms.

  3. 3.

    Although many genetic loci show nonrandom abnormalities, the most frequently involved locates on chromosome 1p regardless of genetic tumor background (sporadic or inherited predisposition).

  4. 4.

    Most pheochromocytomas should begin as monoclonal proliferations that do not always correlate with histopathologic features, particularly in inherited tumor syndromes.

  5. 5.

    Early histopathologic stages, described as adrenal medullary hyperplasias, are defined by hyperproliferative features in animal models and monoclonal patterns in the adrenal nodules from patients with MEN-2a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowell PC. The clonal evolution of tumor cell populations. Science 194:23–28, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Fialkow PJ. Clonal origin of human tumors. Biochim Biophys Acta 458:283–321, 1976.

    PubMed  CAS  Google Scholar 

  3. Califano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: Implication for field cancerization. Cancer Res 56:2488–2492, 1996.

    PubMed  CAS  Google Scholar 

  4. Jones PA, Droller MJ. Pathways of development and progression in bladder cancer: New correlations between clinical observations and molecular mechanisms. Semin Urol 11:177–192, 1993.

    PubMed  CAS  Google Scholar 

  5. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal tumor development. N Engl J Med 319:525–532, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Hellman S. Darwin’s clinical relevance. Cancer 79:2275–2281, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Diaz-Cano SJ, Wolfe HJ. PCR-based techniques for clonality analysis of neoplastic progression. Bases for its appropriate application in paraffin-embedded tissues. Histochem Cell Biol (in press).

  8. Wainscoat JS, Fey MF. Assessment of clonality in human tumors: A review. Cancer Res 50: 1355–1360, 1990.

    PubMed  CAS  Google Scholar 

  9. Gale RE, Wainscoat JS. Clonal analysis using X-linked DNA polymorphisms. Br J Haematol 85:2–8, 1993.

    PubMed  CAS  Google Scholar 

  10. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation ofHpaII andHbaI sites near the polymorphic CAG repeat in the human androgene receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239, 1992.

    PubMed  CAS  Google Scholar 

  11. Fialkow PJ. Primordial cell pool size and lineage relationships of five human cell types. Ann Hum Genet 37:39–48, 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Kappler JW. The 5-methylcytosine content of DNA: tissue specificity. J Cell Physiol 78:33–36, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Latham KE. X chromosome imprinting and inactivation in the early mammalian embryo. TIG 12:134–137, 1996.

    PubMed  CAS  Google Scholar 

  14. Page DL, DeLellis RA, Hough AJ Jr. Tumors of the adrenal. In: Atlas of tumor pathology, 2nd ser., fasci. 23. Washington DC: Armed Forces Institute of Pathology; 1986.

    Google Scholar 

  15. Lack EE. Tumors of the adrenal gland and extra-adrenal paraganglia. In: Atlas of tumor pathology, 3rd ser., fasci. 19. Washington DC: Armed Forces Institute of Pathology: 1997.

    Google Scholar 

  16. DeLellis RA, Wolfe HJ, Gagel RF, et al. Adrenal medullary hyperplasia. A morphometric analysis in patients with familial medullary thyroid carcinoma. Am J Pathol 83:177–190, 1976.

    PubMed  CAS  Google Scholar 

  17. Carney JA, Sizemore GW, Sheps SG. Adrenal medullary disease in multiple endocrine neoplasia, type 1. Pheochromocytoma and its precursor. Am J Clin Pathol 66:279–290, 1976.

    PubMed  CAS  Google Scholar 

  18. Neumann HP, Berger DP, Sigmund G, et al. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. N Engl J Med 329:1531–1538, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Williamson EA, Johnson SJ, Foster S, Kendall-Taylor P, Harris PE. G protein gene mutations in patients with multiple endocrinopathies.J Clin Endocrinol Metab 80: 1702–1705, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Linnoila RI, Keiser HR, Steinberg SM, Lack EE. Histopathology of benign versus malignant sympathoadrenal paragangliomas. Clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 21:1168–1180, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Diaz-Cano SJ, de Miguel M, Galera-Davidson H, Wolfe HJ. Are locally invasive pheochromocytomas biologically distinct from benign chromaffin neoplasms? Pathol Int 46 (Suppl 1): 223, 1996.

    Google Scholar 

  22. Diaz-Cano SJ, Tashjian R, de Miguel M, et al. Distinctive clonal and histological patterns in locally invasive pheochromocytomas. Lab Invest 76:153A, 1997.

    Google Scholar 

  23. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA 90:10,914–10,921, 1993.

    CAS  Google Scholar 

  24. Knudson AG. Mutation and cancer: A personal odyssey. Adv Cancer Res 67:1–23, 1995.

    PubMed  CAS  Google Scholar 

  25. Gutmann DH, Cole JL, Stone WJ, Ponder BA, Collins FS. Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type I. Genes Chromosom Cancer 10:55–58, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Khosla S, Patel VM, Hay ID, Schaid DJ, Grant CS, van Heeren JA, et al. Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. J Clin Invest 87:1691–1699, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Moley JF, Brother MB, Fong CT, White PS, Baylin SB, Nelkin B, et al. Consistent association of 1 p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res 52:770–774, 1992.

    PubMed  CAS  Google Scholar 

  28. Powse AH, Webster AR, Richard S, Olschwang S, Resche F, Affara NA, et al. Somatic inactivation of the VHL gene in von Hippel-Lindau disease tumors. Am J Hum Genet 60:765–771, 1997.

    Google Scholar 

  29. Shin E, Fujita S, Takami K, Kurahashi H, Kurita Y, Kobayashi T, et al. Deletion mapping of chromosome 1p and 22q in pheochromocytoma. Jpn J Cancer Res 84:402–408, 1993.

    PubMed  CAS  Google Scholar 

  30. Vargas MP, Zhuang Z, Wang C, Vortmeyer A, Linehan WM, Merino MJ. Loss of heterozygosity of the short arm of chromosomes 1 and 3 in sporadic pheochromocytomas and extra-adrenal paraganglioma. Hum Pathol 28:411–415, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Yokogoshi Y, Yoshimoto K, Saito S. Loss of heterozygosity on chromosomes 1 and 11 in sporadic pheochromocytomas. Jpn J Cancer Res 81:632–638, 1990.

    PubMed  CAS  Google Scholar 

  32. Boccia LM, Green JS, Joyce C, Eng C, Taylor SA, Mulligan LM. Mutation of RET codon 768 is associated with the FMTC phenotype. Clin Genet 51:81–85, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Baylin SB, Hsu SH, Gann DS, Smallridge RC, Wells SA Jr. Inherited medullary thyroid carcinoma: A final monoclonal mutation in one of multiple clones of susceptible cells. Science 199:429–431, 1978.

    Article  PubMed  CAS  Google Scholar 

  34. Baylin SB, Gann DS, Hsu SH. Clonal origin of inherited medullary thyroid carcinoma and pheochromocytoma. Science 193: 321–323, 1976.

    Article  PubMed  CAS  Google Scholar 

  35. Woodruff MF, Ansell JD, Forbes GM, Gordon JC, Burton DI, Micklem HS. Clonal interaction in tumours. Nature 299:822–824, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Knudson AG, Meadows AT. Regression of neuroblastoma IV-S: a genetic hypothesis. N Engl J Med 302:1254–1256, 1980.

    Article  PubMed  Google Scholar 

  37. Ferraris AM, Mangerini R, Gaetani GF, Romei C, Pinchera A, Pacini F. Polyclonal origin of medullary carcinoma of the thyroid in multiple endocrine neoplasia type 2. Hum Genet 99:202–205, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Chen LC, Kurisu W, Ljung BM, Goldman ES, Moore D II, Smith HS. Heterogeneity for allelic loss in human breast cancer. J Natl Cancer Inst 84:506–510, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Wolman SR, Heppner GH. Genetic heterogeneity in breast cancer. J Natl Cancer Inst 84:469–470, 1992.

    Article  PubMed  CAS  Google Scholar 

  41. Sager R. Tumor suppressor genes: The puzzle and the promise. Science 246:1406–1412.

  42. Weinberg RA. Tumor suppressor genes. Science 254:1138–1146.

  43. Smith HS. Stochastic model for interpreting the data on loss of heterozygosity in breast cancer. J Natl Cancer Inst 82:793–794, 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Mulcahy GM, Goggins M, Willis D, et al. Pathology and genetic testing. Workshop No. 6. Cancer 80:636–648, 1997.

    Google Scholar 

  45. Decker RA, Peacock ML. Update on the profile of multiple endocrine neoplasia type 2a RET mutations. Practical issues and implications for genetic testing. Cancer 80:557–568, 1997.

    Article  Google Scholar 

  46. Versteeg R. Aberrant methylation in cancer. Am J Hum Genet 60:751–754, 1997.

    PubMed  CAS  Google Scholar 

  47. Laird PW, Jaenish R. DNA methylation and cancer. Hum Mol Genet 3:1487–1495, 1994.

    PubMed  CAS  Google Scholar 

  48. Eng C. The RET proto-oncogene in multiple endocrine neoplasia type 2 and Hirchsprung’s disease. N Engl J Med 335:943–951, 1996.

    Article  PubMed  CAS  Google Scholar 

  49. Tischler AS, DeLellis RA, Nunnemacher G, Wolfe HJ. Acute stimulation of chromaffin cell proliferation in the adult rat adrenal medulla. Lab Invest 58:733–735, 1988.

    PubMed  CAS  Google Scholar 

  50. Tischler AS, Ruzicka LA, Donahue SR, DeLellis RA. Pharmacological stimulation of chromaffin cell proliferation in the adult adrenal medulla. Arch Histol Cytol 52 (Suppl): 209–216, 1989.

    PubMed  Google Scholar 

  51. Tischler AS, Ruzicka LA, Van Pelt CS, Sandusky GE. Catecholamine-synthesizing enzymes and chromogranin proteins in drug-induced proliferative lesions of the rat adrenal medulla. Lab Invest 63:44–51, 1990.

    PubMed  CAS  Google Scholar 

  52. Tischler AS, McClain RM, Childers H, Downing J. Neurogenic signals regulate chromaffin cell proliferation and mediate the mitogenic effect of reserpine in the adult rat adrenal medulla. Lab Invest 65:374–376, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Cano, S.J. Clonality studies in the analysis of adrenal medullary proliferations: Application principles and limitations. Endocr Pathol 9, 301–316 (1998). https://doi.org/10.1007/BF02739690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739690

Key Words

Navigation