Skip to main content
Log in

A highly accurate and simple expression of electron drift velocity in gases and semiconductors

Точное и простое выражение для скорости дрейфа электронов в газах и полупроводниках

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The drift velocity for electrons (or holes) in a scattering medium is obtained as the sum of the usual first-order expression plus a correction term. Both terms are expressed as integrals over a single variable and the integrands are known functions of the electron differential collision frequency. Since the correction term is small compared with the principal, usual term, the expression obtained is in practice equivalent to an explicit rigorous solution.

Резюме

Получается выражение для скорости дрейфа электронов (или дырок) в рассеивающей среде, как член первого порядка плюс поправочный член. Оба члена выражаются через интегралы по одной переменной, причем, подынтеградьные выражения представляют известные функции дифференциальной столкновительной частоты электронов. Так как поправочный член является малым по сравнению с обычным главным членом, то полученное выражение практически эквивалентно точному строгому решению.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cavalleri, E. Gatti andF. Gonzalez-Gascon:Nuovo Cimento B,55, 291 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  2. G. Cavalleri andR. Bonalumi:Nuovo Cimento B,55, 318 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Cavalleri andG. Sesta:Phys. Rev.,170, 286 (1968);G. Cavalleri:Phys. Rev. Lett.,23, 907 (1969); for nonisotropic scattering seeS. Paveri-Fontana:Lett. Nuovo Cimento,1, 1259 (1970).

    Article  ADS  Google Scholar 

  4. G. Cavalleri andS. Paveri-Fontana:Phys. Rev. A,6, 328 (1972).

    Article  ADS  Google Scholar 

  5. See the appendix ofR. W. Crompton, M. T. Elford andA. G. Robertson:Aust. J. Phys.,23, 667 (1970); alsoS. Paveri-Fontana:Aust. J. Phys.,25 329 (1972);R. E. Robson andK. Kumar:Aust. J. Phys.,24, 835 (1971).

    Article  ADS  Google Scholar 

  6. See, for example,R. W. Crompton, M. T. Elford andR. L. Jory:Aust. J. Phys.,20, 369 (1967); alsoA. G. Robertson:J. Phys. B,5, 648 (1972).

    Article  ADS  Google Scholar 

  7. G. Cavalleri andR. Bonalumi:Nuovo Cimento B,55, 375 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  8. Notice that the divergences occur forv→0 and that, forv→0, we can always putvv n for any functionv=v(v) occurring in practice. Usually the cross-sections σ(v) tend to a nonzero value forv→0 and, therefore,v=Nσvv, i.e. n=1. The worst case occurs with neon, where a Ramsauer effect atv=0 gives rise to a collision frequency going to zero, forv→0, asv n withn≤1.7 (see, for example,A. G. Robertson:J. Phys. B,5, 648 (1972); see alsoD. G. Thompson:J. Phys. B,4, 468 (1971)).

    Article  ADS  Google Scholar 

  9. G. Cavalleri, R. Di Lascio andV. Giuntoli:Nuovo Cimento B,55, 329 (1980).

    Article  ADS  Google Scholar 

  10. G. Cavalleri:Nuovo Cimento B,55, 385 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by ENEL.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalleri, G. A highly accurate and simple expression of electron drift velocity in gases and semiconductors. Nuov Cim B 55, 360–374 (1980). https://doi.org/10.1007/BF02739166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739166

Navigation