Skip to main content
Log in

Vacuum polarization and non-Newtonian gravitation

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. I point out here that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational «constant». Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments.

Riassunto

Gell-Mann e Low hanno messo in evidenza che, come predecentemente indicato da Uehling e Serber, effetti di polarizzazione nel vuoto producono una modificazione logaritmica al potenziale di Coulomb a piccole distanze. Si mette qui in evidenza che, se queste stesse considerazioni sono applicate alla gravitazione, il termine logaritmico avrà un segno opposto rispetto al caso di Coulomb e in accordo con recenti risultati di laboratorio sulla «costante» gravitazionale. Di considerevole importanza è il fatto che tali effetti di polarizzazione nel vuoto non possono essere osservati in esperimenti nulli per controllare la legge gravitazionale quadratica inversa perchè il campo polarizzante è assente. È una circostanza interessante che il coefficiente del logaritmo in QED sia quasi lo stesso che quello trovato negli esperimenti gravitazionali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann andF. E. Low:Phys. Rev.,95, 1300 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A. E. Uehling:Phys. Rev.,48, 55 (1935).

    Article  ADS  MATH  Google Scholar 

  3. R. Serber:Phys. Rev.,48, 49 (1935).

    Article  ADS  Google Scholar 

  4. D. R. Long:Phys. Rev. D,9, 850 (1974).

    Article  ADS  Google Scholar 

  5. D. R. Long:Nature (London),260, 417 (1976).

    Article  ADS  Google Scholar 

  6. O. V. Karagioz et al.: English translation:Phys. Solid Earth,12, No. 5, pp. 351–354 (1976) (Russian original:Izv. Earth Phys., No. 5, pp. 106–111 (1976)). These authors were apparently unaware of it, but their tabulated values ofG over their largest range of mass separations yield a least-squares fit in exact agreement with ref. (4,5)D. R. Long:Phys. Rev. D,9, 850 (1974).D. R. Long:Nature (London),260, 417 (1976). That is λ=0.00215±0.00061.

    Google Scholar 

  7. Y. Fujii:Nature (London) Phys. Sci.,234, 5 (1971).

    Article  ADS  Google Scholar 

  8. J. O'Hanlon:Phys. Rev. Lett.,29, 137 (1972).

    Article  ADS  Google Scholar 

  9. D. R. Mikkelsen andM. J. Newman:Phys. Rev. D,16, 191 (1977).

    Article  Google Scholar 

  10. F. D. Stacey et al. (submitted for publication), University of Queensland, Australia 4067.

  11. S. L. Adler, J. Lieberman, Yee Jack Ng andH. S. Tsao.:Phys. Rev. D,14, 359 (1976).

    Article  ADS  Google Scholar 

  12. A. S. Goldhaber andM. M. Nieto:Rev. Mod. Phys.,43, 277 (1971). These authors quote limits ranging from 10−43 g to 10−48 g for the photon rest mass. Some workers might protest that the Planck length, (Gh/c 3)1/2≃10−33 cm, should apply here. It should be noted from eq. (1) that the range depends only on the fermion mass and not directly on the coupling constant.

    Article  ADS  Google Scholar 

  13. The correction to the Coulomb potential forr≪ħ/mc goes asr −5/2 exp [−r/(ħ/mc)]. See eq. (17) of ref. (2).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, D.R. Vacuum polarization and non-Newtonian gravitation. Nuov Cim B 55, 252–256 (1980). https://doi.org/10.1007/BF02739157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739157

Navigation