Skip to main content
Log in

Expression of endoprotease furin, prohormone convertase (PC) 1/3 and PC2 in pulmonary neuroendocrine lesions: Correlation of functional differentiation of neuroendocrine cells with posttranslational processing of prohormones

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Prohormone convertases (PCs) are key enzymes in the regulated pathway for the posttranslational processing of peptide hormones, whereas furin is a microsomal protease mediating the constitutive pathway of protein secretion in most secretory cells. To elucidate the relationship of the expression of these processing enzymes and cellular differentiation, we examined the localization of furin, PC1/3, and PC2 using immunohistochemistry andin situ hybridization in such pulmonary neuroendocrine lesions as bronchial carcinoids, pulmonary tumorlets, and small-cell carcinomas of the lung. PCs were commonly detected in the cytologically and functionally differentiated lesions, i.e., carcinoids and tumorlets with immunoreactivity for peptide products in secretory granules. However, PCs and hormones were absent in most of the cytologically less-differentiated lesions, i.e., small-cell carcinoma. Only a few malignant lesions showed focal peptide production. In contrast, furin was expressed in all the lesions, including small-cell carcinoma. It is suggested that furin functions in the poorly differentiated neuroendocrine tumor containing few secretory granules, by participating in the premature processing of peptide products. The lack of PCs should be a fundamental mechanism for the detection of prohormones in the serum of patients with small-cell carcinoma of the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagahama M, Ikemizu J, Misumi Y, Ikehara Y, Murakami K, Nakayama K. Evidence that differentiates between precusor cleavages at dibasic and Arg-X-Lys/Arg-Arg sites. J Biochem Tokyo 110:806–11, 1991.

    PubMed  CAS  Google Scholar 

  2. Hosaka M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem 266:12,127–12,130, 1991.

    CAS  Google Scholar 

  3. Fuller RS, Brake AJ, Thorner J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 27:482–486, 1989.

    Article  Google Scholar 

  4. Molloy SS, Thomas L, VanSlyke JK, Stenberg PE, Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13:18–33, 1994.

    PubMed  CAS  Google Scholar 

  5. Leduc R, Molloy SS, Thorne BA, Thomas G. Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J Biol Chem 15:14,304–14,308, 1992.

    Google Scholar 

  6. Creemers JW, Siezen RJ, Roebroek AJ, Ayoubi TA, Huylebroeck D, Van de Ven WJ. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem 15:21,826–21,834, 1993.

    Google Scholar 

  7. Bosshart H, Humphrey J, Deignan E, Davidson J, Drazba J, Yuan L, Oorschot V, Peters PJ, Bonifacino JS. The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol 126:1157–1172, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Scopsi L, Gullo M, Rilke F, Martin S, Steiner DF. Proprotein convertases (PC1/PC3 and PC2) in normal and neoplastic human tissues: their use as markers of neuroendocrine sues: their use as markers of neuroendocrine differentiation. J Clin Endocrinol Metab 80:294–301, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe T, Nakagawa T, Ikemizu J, Nagahama M, Murakami K, Nakayama K. Sequence requirements for precursor cleavage within the constitutive secretory pathway. J Biol Chem 25:8270–8274, 1992.

    Google Scholar 

  10. Watanabe T, Murakami K, Nakayama K. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett 12:215–218, 1993.

    Article  Google Scholar 

  11. Takahashi S, Hatsuzawa K, Watanabe T, Murakami K, Nakayama K. Sequence requirements for endoproteolytic processing of precursor proteins by furin: transfection and in vitro experiments. J Biochem Tokyo 116:47–52, 1994.

    PubMed  CAS  Google Scholar 

  12. Nakayama K, Watanabe T, Nakagawa T, Kim WS, Nagahama M, Hosaka M, Hatsuzawa K, Kondoh Hashiba K, Murakami K. Consensus sequence for precursor processing at monoarginyl sites. Evidence for the involvement of a Kex2-like endoprotease in precursor cleavages at both dibasic and mono-arginyl sites. J Biol Chem 15:16,335–16,340, 1992.

    Google Scholar 

  13. Itoh Y, Tanaka S, Takekoshi S, Itoh J, Osamura RY. Prohormone convertases (PC1/3 and PC2) in rat and human pancrease and islet cell tumors: subcellular immunohistochemical analysis. Pathol Int 46:726–737, 1996.

    PubMed  CAS  Google Scholar 

  14. Hornby PJ, Rosenthal SD, Mathis JP, Vindrola O, Lindberg I. Immunocytochemical localization of the neuropeptide-synthesizing enzyme PC1 in AtT-20 cells. Neuroendocrinology 58(5):555–563, 1993.

    PubMed  CAS  Google Scholar 

  15. Osamura RY, Suemizu Y, Yoshimura S, Hori S, Inada K, Watanabe K, Nakai Y, Imura H. Secretory pathways and processing of human proopiomelanocortin (POMC) using transformed mouse cultured fibroblasts (L cells) and AtT20 cells by human POMC gene— preembedding immunoelectron microscopic studies. Peptides 12:503–507, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Osamura RY, Tsutsumi Y, Watanabe K. Light and electron microscopic localization of ACTH and pro-opiomelanocortin-derived peptides in human developmental and neoplastic cells. J Histochem Cytochem 32:885–893, 1984.

    PubMed  CAS  Google Scholar 

  17. Tanaka S, Kurabuchi S, Mochida H, Kato T, Takahashi S, Watanabe T, Nakayama K. Immunocytochemical localization of prohormone convertases PC1/PC3 and PC2 in rat pancreatic islets. Arch Histol Cytol 59:261–271, 1996.

    PubMed  CAS  Google Scholar 

  18. Rouille Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G, Oliva AA Jr, Chan SJ, Steiner DF. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 16:322–361, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. van Duijnhoven HL, Creemers JW, Kranenborg MG, Timmer ED, Groeneveld A, van den Ouweland AM, Roebroek AJ, van de Ven WJ. Development and characterization of a panel of monoclonal antibodies against the novel subtilisin-like proprotein processing enzyme furin. Hybridoma 11:71–86, 1992.

    Article  PubMed  Google Scholar 

  20. Koji T, Brenner RM. Localization of estrogen receptor messenger ribonucleic acid in rhesus monkey uterus by nonradioactive in situ hybridization with digoxigenin-labeled oligodeoxynucleotides. Endocrinology 132:382–392, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Lloyd RV, Jin L, Qian X, Scheithauer BW, Young WF Jr, Davis DH. Analysis of the chromogranin A post-translational cleavage product pancreastatin and the prohormone convertases PC2 and PC3 in normal and neoplastic human pituitaries. Am J Pathol 146:1188–1198, 1995.

    PubMed  CAS  Google Scholar 

  22. Takumi I, Steiner DF, Sanno N, Teramoto A, Osamura RY. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod Pathol 11:232–238, 1998.

    PubMed  CAS  Google Scholar 

  23. Kajiwara H, Ito Y, Tanaka S, Osamura RY. Immunohistochemical expressions of prohormone convertase (PC1/3 and PC2) in human endocrine tumors. Mod Pathol 10:50A, 1997 (abstract).

    Google Scholar 

  24. Abe Y, Utsunomiya H, Tsutsumi Y. A typical carcinoid tumor of the lung with amyloid stroma. Acta Pathol Jpn 42:286–292, 1992.

    PubMed  CAS  Google Scholar 

  25. Tsutsumi Y, Osamura RY, Watanabe K, Yanaihara N. Immunohistochemical studies on gastrin-releasing peptide-and adrenocorticotropic hormone-containing cells in the human lung. Lab Invest 48:623–632, 1983.

    PubMed  CAS  Google Scholar 

  26. Tsutsumi Y. Immunohistochemical analysis of neuroendocrine substances in nonneoplastic lung and in neuroendocrine lung tumors. In: Lechago J, Kameya T, eds. Endocrine pathology update, vol 1. Philadelphia, PA: Field & Wood 1990; 189–213.

    Google Scholar 

  27. Orth DN, Nicholson WE. High molecular weight forms of human ACTH are glycoproteins. J Clin Endocrinol Metab 44:214–217, 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Miyake Y, Kodama T, Yamaguchi K. Pro-gas-trin-releasing peptide (31–98) is a specific tumor marker in patients with small cell lung carcinoma. Cancer Res 15:2136–2140, 1994.

    Google Scholar 

  29. Kayo T, Sawada Y, Suda M, Konda Y, Izumi T, Tanaka S, Shibata H, Takeuchi T. Proprotein-processing endoprotease furin controls growth of pancreatic beta-cell. Diabetes 48:1296–1304, 1997.

    Article  Google Scholar 

  30. Osamura RY, Yasuda O, Kawakami T, Itoh Y, Inada K, Kakudo K. Immunoelectron microscopic demonstration of regulated pathway for calcitonin end constitutive pathway for carcinoembryonic antigenin the same cells of human medullary carcinomas of thyroid glands. Mod Pathol 10:7–11, 1997.

    PubMed  CAS  Google Scholar 

  31. Metze D, Luger TA. Ultrastructural localization of carcinoembryonic antigen (CEA) glycoproteins and epithelial membrane antigen (EMA) in normal and neoplastic sweat glands. J Cutan Pathol 23:518–529, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kajiwara MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiwara, H., Tanaka, S., Itoh, Y. et al. Expression of endoprotease furin, prohormone convertase (PC) 1/3 and PC2 in pulmonary neuroendocrine lesions: Correlation of functional differentiation of neuroendocrine cells with posttranslational processing of prohormones. Endocr Pathol 10, 85–94 (1999). https://doi.org/10.1007/BF02738819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738819

Key Words

Navigation