Skip to main content
Log in

Growth hormone-releasing hormone receptor (GHRH-R) mRNA expression in human pituitary adenomas: A study by catalyzed reporter deposition-In situ hybridization (CARD-ISH)

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Growth hormone-releasing hormone (GHRH) stimulates growth hormone (GH) gene transcription, synthesis, and secretion of growth hormone via growth hormone-releasing hormone receptor (GHRH-R). In a previous study using reverse transcriptase polymerase chain reaction (RT-PCR) and Northern blotting, GHRH-R mRNA was detected in all types of pituitary adenomas. On the other hand, in a recentin situ hybridization (ISH) study of 16 adenomas, including GH (n=8), PRL (n=1), ACTH (n=2), gonadotroph (n=4), and null-cell (n=1) adenomas, GHRH-R mRNA expression was observed only in GH adenomas and one gonadotroph adenoma. Thus, the extent of GHRH-R mRNA in pituitary adenomas is not clear. To clarify these different findings, we investigated the expression of GHRH-R mRNA in various types of human pituitary adenomas, including GH (n=7), PRL (n=4), ACTH (n=3), gonadotroph (n=8), and null-cell adenomas (n=13) using conventional ISH and the CARD-ISH technique, which is more sensitive than previous nonisotopic ISH techniques. By conventional ISH, GHRH-R was found in 71% of GH, 50% of PRL, 67% of ACTH, 12% of gonadotroph, and 8% of null-cell adenomas. By catalyzed reporter deposition-in situ hybridization (CARD-ISH), GHRH-R mRNA was expressed in 100% of GH, 50% of PRL, 67% of ACTH, 62% of gonadotroph, and 70% of null-cell adenomas. Hybridization with the control sense probe was consistently negative. These results show that GHRH-R mRNA is expressed in all types of adenomas with GH adenomas showing the strongest signal for GHRH-R mRNA, suggesting that GHRH-R has a role mainly in the function of GH adenomas, but may also play a role in tumor growth and/or function of other types of adenomas. These experiments also show that CARD-ISH can be used to detect low copy numbers of specific mRNAs because of the increased sensitivity of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ibata Y, Okamura H, Makino S, Kawakami F, Morimoto N, Chihara K. Light and electron microscopic immunohistochemistry of GRF-like immunoreactive neurons and terminals in the rat hypothalamic arcuate nucleus and median eminence. Brain Res 370:136–143, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Cronin MJ, Rogol AD, Dabney LG, Thorner MO. Selective growth hormone and cyclic AMP stimulating activity is present in human pancreatic islet cell tumor. J Clin Endocrinol Metab 55:381–383, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Cronin MJ, Rogol AD, MacLeod RM, Keefer DA, Login IS, Borges JL, et al. Biological activity of a growth hormone-releasing factor secreted by a human tumor. Am J Physiol 244:E346-E353, 1983.

    PubMed  CAS  Google Scholar 

  4. Bilezikjian LM, Erlichman J, Fleischer N, Vale WW. Differential activation of type I and type II 3', 5'-cyclic adenosine monophosphate-dependent protein kinases by growth hormone-releasing factor. Mol Endocrinol 1:137–146, 1987.

    PubMed  CAS  Google Scholar 

  5. Lin C, Lin SC, Chang CP, Rosenfeld MG. Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 360:765–768, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Mayo KE. Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Mol Endocrinol 6:1734–1744, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Hsiung HM, Smith DP, Zhang XY, Bennett T, Rosteck PR Jr, Lai MH. Structure and functional expression of a complementary DNA for porcine growth hormone-releasing hormone receptor. Neuropeptides 25:1–10, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Gaylinn BD, Harrison JK, Zysk JR, Lyons CE, Lynch KR, Thorner MO. Molecular cloning and expression of a human anterior pituitary receptor for growth hormone-releasing hormone. Mol Endocrinol 7:77–84, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Gaylinn BD, von Kap-Herr C, Golden WL, Thorner MO. Assignment of the human growth hormone-releasing hormone receptor gene (GHRHR) to 7p14 by in situ hybridization. Genomics 19:193–195, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Wajnrajch MP, Chua SC, Green ED, Leibel RL. Human growth hormone-releasing hormone receptor (GHRHR) maps to a YAC at chromosome 7p15. Mammalian Genome 5:595, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Asa SL, Kovacs K, Stefaneanu L, Horvath E, Billestrup N, Gonzales-Manchon C, et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 131:2083–2089, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Mayo KE, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Evans RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 2:606–612, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Lopes MBS, Gaylinn BD, Thorner MO, Stoler MH. Growth hormone-releasing hormone receptor mRNA in acromegalic pituitary tumors. Am J Pathol 150:1885–1891, 1997.

    PubMed  CAS  Google Scholar 

  14. Hashimoto K, Koga M, Motomura T, Kasayama S, Kouhara H, Ohnishi T, et al. Identification of alternatively spliced messenger ribonucleic acid encoding truncated growth hormone-releasing hormone receptor in human pituitary adenomas. J Clin Endocrinol Metab 80:2933–2939, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ. Catalyzed reporter deposition, a novel method of signal amplification: Application to immunoassays. J Immunol Methods 125:279–285, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Koji T, Kanemitsu Y, Hoshino A, Nakane PK. A novel amplification method of non-radioactive in situ hybridization signal for specific RNA with biotinylated tyramine. Acta Histochem Cytochem 30:401–406, 1997.

    CAS  Google Scholar 

  17. Dani C, Piechaczyk M, Audigier Y, El Sabouty S, Cathala G, Marty L, et al. Characterization of the transcription products of glyceraldehyde-3-phosphate-dehydrogenase gene in HeLa cells. Eur J Biochem 145:299–304, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Sanno N, Teramoto A, Osamura RY, Genka S, Katakami H, Jin L, et al. A Growth hormone-releasing hormone-producing pancreatic islet cell tumor metastasized to the pituitary is associated with pituitary somatotroph hyperplasia and acromegaly. J Clin Endocrinol Metab 82:2731–2737, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol chloroform extraction. Anal Biochem 162:156–159, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Qian X, Jin L, Grande JP, Lloyd RV. Transforming growth factor-β and p27 expression in pituitary cells. Endocrinology 137:3051–3060, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Jin L, Chandler WF, Smart JB, England BG, Lloyd RV. Differentiation of human pituitary adenomas determines the pattern of chromogranin/secretogranin messenger ribonucleic acid expression. J Clin Endocrinol Metab 76:728–738, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Lloyd RV, Cano M, Chandler WF, Barkan AL, Horvath E, Kovacs K. Human growth hormone and prolactin secretion pituitary adenomas analyzed by in situ hybridization. Am J Pathol 134:605–613, 1989.

    PubMed  CAS  Google Scholar 

  23. Lloyd RV, Jin L. In situ hybridization analysis of chromogranin A and B mRNAs in neuroendocrine tumors with digoxigenin-labeled oligonucleotide probe cocktails. Diagn Mol Pathol 4:143–151, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Petersenn S, Rasch AC, Heyens M, Schulte HM. Structure and regulation of the human growth hormone-releasing hormone receptor gene. Mol Endocrinol 12:233–247, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Bodner M, Karin M. A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell 50:267–275, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, et al. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55:519–529, 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator Pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 77:1275–1280, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Friend KE, Chiou YK, Laws ER Jr, Lopes MB, Shupnik MA. Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas. J Clin Endocrinol Metab 77:1281–1286, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylcyclase in human pituitary tumors. Nature 340:692–696, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Thapar K, Kovacs K, Stefaneanu L, Scheithauer B, Killinger DW, Lloyd RV, et al. Overexpression of the growth hormone-releasing hormone gene in acromegaly-associated pituitary tumors. An event associated with neoplastic progression and aggressive behavior. Am J Pathol 151:769–784, 1997.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, H., Jing, L., Scheithauer, B.W. et al. Growth hormone-releasing hormone receptor (GHRH-R) mRNA expression in human pituitary adenomas: A study by catalyzed reporter deposition-In situ hybridization (CARD-ISH). Endocr Pathol 10, 27–36 (1999). https://doi.org/10.1007/BF02738813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738813

Key Words

Navigation