Skip to main content
Log in

Matrix metalloproteinases and tissue inhibitors of metalloproteinases in some endocrine organs and their tumors

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are single-chain zinc-containing metalloenzymes. The MMP gene family currently includes more than 19 endopeptidases. Both MMP-2 and 9 are widely expressed by many stromal and endothelial cells. Tissue inhibitors of metalloproteinases (TIMPs) form complexes with MMPs, which in turn inhibit active MMPs. MMP and TIMP homeostasis has been implicated in many aspects of both physiological and pathological processes. The latter include tumor invasion and metastasis. Although ductal adenocarcinomas of pancreas were immunocytochemically faintly stained for MMPs and TIMPs, normal pancreatic islets in the normal adjacent pancreas were found to be strongly stained for MMPs and TIMPs. Five kinds of islet cell tumors, including insulinomas, gastrinomas, glucagonomas, pancreatic polypeptide- (PP) omas, and nonfunctioning islet cell tumor, were stained for MMPs and TIMPs. The tumor cells were relatively weakly stained for MMPs and TIMPs compared to normal islets. Similarly, weaker staining for MMPs and TIME’s was noted for medullary thyroid carcinomas (MTCs) and pituitary adenomas. There was no correlation between immunostaining intensity of protein hormones and MMPs and TIMPs. However parathyroid hyperplasia, adenoma, and carcinoma that stained for MMPs and TIMPs were weaker, which paralleled the weaker immunostaining for parathyroid hormone and chromogranin. This weaker staining for MMPs and TIMPs in endocrine tumors may imply a less significant role of tumor invasion and metastasis by MMP and TIMP homeostasis. At present, immunocytochemical staining for MMPs and TIMPs may well be used as new markers for neuroendocrine cells and their tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodelling. FASEB J 5:2145–2154, 1991.

    PubMed  CAS  Google Scholar 

  2. Berkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Berkedal-Hansen B, DeCarlo A, et al. Matrix metalloproteinases: A review. Crit Rev Oral Biol Med 42:197–250, 1993.

    Google Scholar 

  3. Matriasian LM. The matrix degrading metalloproteinases. Bioassays 14:455–463, 1992.

    Article  Google Scholar 

  4. Stetler-Stevenson WG. Dynamics of matrix turnover during pathologic remodelling of the extracellular matrix. Am J Pathol 148:1345–1350, 1996.

    PubMed  CAS  Google Scholar 

  5. Liotta LA, Stegs DS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis. Cell 64:327–336, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Stetler-Stevenson WG, Sznavoorian S, Liotta LA. Tumor cell interaction with extracellular matrix during invasion and metastasis. Ann Rev Cell Biol 9:541–573, 1993.

    PubMed  CAS  Google Scholar 

  7. Stetler-Stevenson WG, Liotta LA, Kleiner DE Jr. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 7:1434–1441, 1993.

    PubMed  CAS  Google Scholar 

  8. Nakajima M, Morisawa K, Rabra A, Bucana CD, Fidler IJ. Influence of organ environment in extracellular matrix degrading activity and metastasis of human colon carcinoma cells. J Natl Cancer Inst 82:1890–1898, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. McDonnel S, Navre M, Coffey RJ Jr, Matrisian LM. Expression and localization of the matrix metalloproteinases pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog 4:527–533, 1991.

    Article  Google Scholar 

  10. Poulson R, Pignatelli M, Stetler-Stevenson WG, Liotta LA, Wright PA, Jeffery RE, et al. Stromal expression of 72 Kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 141:389–396, 1992.

    Google Scholar 

  11. Levy AT, Cioce V, Sobel ME, Garbisa S, Grigioni WF, Liotta LA, et al. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res 51:439–444, 1991.

    PubMed  CAS  Google Scholar 

  12. Tomita T, Iwata K. Gelatinases and inhibitors of gelatinases in pancreatic islets and islet cell tumors. Mod Pathol 10:4754, 1997.

    Google Scholar 

  13. Tomita T. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in thyroid C-cells and medullary thyroid carcinomas. Histopathology 31:150–156, 1997.

    Article  PubMed  CAS  Google Scholar 

  14. Tomita T. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in pituitary adenomas. Endocr Pathol 4:305–313, 1997.

    Google Scholar 

  15. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160, 1998.

    Google Scholar 

  16. Berg JM, Shi Y. The galvanization of biology: a growing appreciation of the roles of zinc. Science 27:1081–1085, 1996.

    Article  Google Scholar 

  17. Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI. SV 40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 164:17213–17221, 1989.

    Google Scholar 

  18. Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase (TIMP-2): a new member of the metallo-proteinase inhibitor family. J Biol Chem 264:17,374–17,378, 1989.

    CAS  Google Scholar 

  19. Kolkenbrock H, Orgel D, Hecker-Kia A, Noack W, Ulbrick N. The complex between a tissue inhibitor of metalloproteinases (TIMP-2) and 72-kDa progelatinase is a metalloproteinase inhibitor. Eur J Biochem 198:775–781, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Tomita T, Iwata K. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in colonic adenoma-adenocarcinoma. Dis Colon Rectum 39:1255–1264, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Kodama S, Iwata K, Iwata H, Yamashita K, Hayakawa T. Rapid one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases. J Immunol Method 127:103–108, 1990.

    Article  CAS  Google Scholar 

  22. Fujimoto N, Zhang J, Iwata K, Shinya T, Okada Y, Hayakawa T. A one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases-2 using monoclonal antibodies. Clin Chemica Acta 220:31–45, 1993.

    Article  CAS  Google Scholar 

  23. Tomita T, Friesen SR, Kimmel JR, Pollock HG. Pancreatic polypeptide-secreting islet cell tumors. Am J Pathol 113:134–142, 1983.

    PubMed  CAS  Google Scholar 

  24. Tomita T, Kimmel JR, Friesen SR, Doull V, Pollock HG. Pancreatic polypeptide in islet cell tumors. Cancer 56:1649–1657, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Zucker S, Lysik RM, Zarrabi MH, Moll V. Mr 92,000 type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res 53:140–146, 1993.

    PubMed  CAS  Google Scholar 

  26. Okada Y, Morodomi T, Englid JJ, Suzuki K, Yasui A, Nakanishi I, et al. Matrix metallo-proteinase 2 from human rheumatoid synovial fibroblasts. Eur J Biochem 194:721–730, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Itoh Y, Nagase H. Preferential inactivation of tissue inhibitor of metalloproteinase-1 that is bound to precursor of matrix metallo-proteinase 9 by human neutrophil elastase. J Biol Chem 270:16,518–16,521, 1995.

    CAS  Google Scholar 

  28. Pearce AGE. Common cytochemical and ultrastructural characteristics of cell producting polypeptide hormones and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R Soc B 170:71–80, 1968.

    Article  Google Scholar 

  29. Pearce AGE. The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryogenic and pathologic implications of the concept. J Histochem Cytochem 17:303–313, 1969.

    Google Scholar 

  30. Pearce AGE. The diffuse neuroendocrine system and the AUPD concept: related endocrine peptides in brain, intestine, pituitary, placenta and anuran cutaneous gland. Med Biol 55:115125, 1977.

    Google Scholar 

  31. Andrew A. A further evidence that the enterochromaffin cells are not derived from the neural crest. J Embryol Exp Morphol 31: 589–598, 1974.

    PubMed  CAS  Google Scholar 

  32. Andrew A, Kramer B, Rawdon BB. Gut and pancreatic amine precursor uptake and decarboxylation cells are not neural crest derivatives. Gastroenterology 84:429–431, 1983.

    PubMed  CAS  Google Scholar 

  33. Dayal Y. Neuroendocrine cells of gastrointestinal tract: Introduction and historical perspective. In: Dayal Y, ed. Endocrine Pathology of the Gut and Pancreas. Boca Raton: CRC, 1991; 1–31.

    Google Scholar 

  34. Delellis RA. Parathyroid adenoma, parathyroid carcinoma, primary chief cell hyperplasia, secondary and tertiary hyperplasia. In: Tumors of Parathyroid Gland. Armed Forces Institute of Pathology, Washington, DC: 1993; 53–92.

    Google Scholar 

  35. Matsushita H. Pathology of the parathyroid gland. In: Lechago J, Gould VE, eds. Bloodworth’s Endocrine Pathology. Baltimore: Williams and Wilkins, 1997; 249–272.

    Google Scholar 

  36. Tomita T, Watanabe I, Rengachary SS. Immunoelectron microscopy for growth hormone and prolactin in pituitary adenoma. Hum Pathol 18:367–374, 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Lloyd RV, Sisson JC, Shapiro B, Verhofstad AAJ. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes and chromogranin in neuroendocrine cells and tumors. Am J Pathol 125:45–54, 1986.

    PubMed  CAS  Google Scholar 

  38. Weber CJ, Russel J, Chryssochos JT, Hagler M, McGarity WC. Parathyroid hormone content distinguishes true normal parathyroid from parathyroids of patients with primary hyperparathyroidism. World J Surg 20:1010–1015, 1996.

    Article  PubMed  CAS  Google Scholar 

  39. Emnert-Buck MK, Roth MJ, Zhang Z, Campo E, Rozhin J, Sloane BF, et al. Increased gelatinase A(MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer. Am J Pathol 145:1285–1290, 1994.

    Google Scholar 

  40. Basset P, Belloq JP, Wolf C, Stoll I, Hutin P, Limacher JM, et al. A novel metalloproteinase gene specifically expressed stromal cells of breast carcinomas. Nature 348:699–704, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Lyons JG, Birkedal-Hansen B, Moore WGI, O’Grady RL, Birkedal-Hansen H. Characteristics of 95 kDa matrix metalloproteinases produced by mammary carcinoma cells. Biochemistry 30:1449–1456, 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Wolf C, Rouyer N, Lutz Y, Adida C, Loriot MK, Bellocq JP, et al. Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90:1843–1847, 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Tyggvason K, Hoyhtya M, Pyke C. Type IV collagenases in invasive tumors. Breast Can Res Treatment 24:209–218, 1993.

    Article  Google Scholar 

  44. Muller, D, Breathnach R, Engelman, A, Millon, R, Bronner, G, Flesch, H, et al. Expression of collagenase-related metalloproteinase gene in human lung and head and neck tumors. Int J Cancer 48:550–556, 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Kawano N, Osawa H, Ito T, Nagashima Y, Hirahara F, Inayama Y, et al. Expression of gelatinase A, tissue inhibitor of metalloproteinases-2, matrylysin, and trypsin in lung neoplasm. Hum Pathol 28:613–622, 1997.

    Article  PubMed  CAS  Google Scholar 

  46. DeClerk YA, Shimada H, Gonzalez-Gomez I, Raffel C. Tumoral invasion in the central nervous system. J Neuro-Oncol 18:111–121, 1994.

    Article  Google Scholar 

  47. Satoh K, Ohtani H, Shimosegawa T, Koizumi M, Sawai T, Toyota T. Infrequent stromal expression of gelatinase A and intact basement membrane in intraductal neoplasms of the pancreas. Gastroenterology 107:1488–1495, 1994.

    PubMed  CAS  Google Scholar 

  48. Ueda Y, Imai K, Tsuchiya N, Fujimoto N, Nakamishi I, et al. Matrix metalloproteinase 9(gelatinase B) is expressed in multinucleated giant cells of human giant cell tumors of bone and is associated with vascular invasion. Am J Pathol 148:611–622, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, T., Iwata, K. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in some endocrine organs and their tumors. Endocr Pathol 10, 15–26 (1999). https://doi.org/10.1007/BF02738812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738812

Key Words

Navigation