Skip to main content
Log in

Field theory of gravitation

Полевая теория гравитации

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

A field theory of gravitation where the stress-energy tensor of gravity contributes to geometric curvatures is described. The field is locally Lorentz covariant, namely in an infinitesimally small laboratory (not necessarily freely falling) the equations are formally the same as they would be in special relativity. The theory reproduces all known gravitational effects correctly and has experimental consequences differing from those of the Einsteinian theory.

Riassunto

Si descrive una teoria di campo per la gravitazione in cui il tensore sforzo-energia della gravità contribuisce alle curvature geometriche. Il campo è localmente covariante secondo Lorentz, vale a dire in un laboratorio infinitamente piccolo (non necessariamente in caduta libera) le equazioni sono formalmente le stesse come sarebbero nella relatività ristretta. La teoria riproduce correttamente tutti gli effetti gravitazionali noti ed ha conseguenze sperimentali che si discostano da quelle della teoria di Einstein.

Резюме

Описывается полевая теория гравитации, в которой тензор энергиинапряжений для гравитации дает вклад в геометрическую кривизну. Рассматриваемое поле является локально Лорентц-ковариантным, то есть в бесконечно малой лаборатории (не обязательно свободно падающей) исследуемые уравнения оказываются формально такими же как в специальной теории относительности. Предложенная теория правильно воспроизводит все известные гравитационные эффекты, но имеет экспериментальные следствия, отличающиеся от следствий теории Эйнштейна.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yilmaz:Phys. Rev.,111, 1417 (1958);Phys. Rev. Lett.,20, 1399 (1971));Ann. of Phys.,81, 179 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. Yilmaz:Lett. Nuovo Cimento,6, 181 (1973);7, 337 (1973);Ann. of Phys.,81, 179 (1973). At the observation point\(\partial _\nu \left( {\sqrt { - g} g^{\mu \nu } } \right)\) vanishes although not necessarily so does\(\partial _\mu \partial _\nu \left( {\sqrt { - g} g^{\mu \nu } } \right)\).

    Article  MathSciNet  Google Scholar 

  3. H. P. Robertson andT. W. Noonan:Relativity and Cosmology (London, 1968), p. 150. See also p. 239 for general applicability of Robertson's method.Robertson andNoonan are the only authors who gave generally applicable formulae for the perihelion and light deflection calculations.

  4. J. Schwinger:Particles, Fields and Sources (Reading, Mass., 1970), p.83, 253, 395.

  5. H. Yilmaz:Lett. Nuovo Cimento,5, 309 (1972);Physics Today (March 1973), p. 15;Ann. of Phys.,81, 179 (1973).

    Article  ADS  Google Scholar 

  6. R. E. Clapp:Phys. Rev. D,7, 345 (1973).

    Article  ADS  Google Scholar 

  7. H. Yilmaz: unpublished (1973);Nuovo Cimento,10 B, 79 (1972).

  8. H. Yilmaz:Ann. of Phys.,81, 179 (1973).

    Article  ADS  Google Scholar 

  9. S. N. Gupta:Recent Developments in General Relativity (London, 1962), p. 251.

  10. D. M. Eardley, D. L. Lee andA. P. Lightman:Phys. Rev. D,8, 3308 (1973).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported, in part, by the Advanced Research Projects Agency, Department of Defence, under contract No. DAHC-15-73-C-0369.

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, H. Field theory of gravitation. Nuov Cim B 26, 577–591 (1975). https://doi.org/10.1007/BF02738578

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738578

Navigation