Skip to main content
Log in

Stratified multiphase model for blood flow in a venular bifurcation

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Availablein vitro andin vivo experimental observations suggest that red cell aggregation and blood vessel geometry are improtant determinants of the flow characteristics of blood in venules. However, no consistent relationship has been observed between red blood cell aggregation and vascular resistance. The present work attempts to understand this relationship by evaluating computationally the effect of red cell aggregation on the flow characteristics of blood in a converging vessel, bifurcation. The proposed mathematical model considers blood as a two-phase continuum, with a central core region of concentrated red cell suspension that is surrounded by a layer of plasma adjacent to the vessel wall. In the central core region, blood is described by Quemada’s non-Newtonian rheological model, in which local viscosity is a function of both the local hematocrit and a structural parameter that is related to the size of red blood cell aggregates. Fluids from the two feeding branches are immiscible, which results in a stratified multiphase flow in the collecting venule. Calculations predict a complex, three-dimensional pattern of blood flow and generally nonaxisymmetric distribution of velocity, hematocrit, and shear stress in the collecting venule. The calculations are a first step toward a realistic model of blood flow in the venous microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, C., A. R. Pries, and P. Gaehtgens. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.Am. J. Physiol. 265:H553-H561, 1993.

    PubMed  CAS  Google Scholar 

  2. Bjornberg, J., M. Maspers, and S. Mellander. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.Acta Physiol. Scand. 135:83–94, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Carr, R. T. Estimation of hematocrit profile symmetry recovery length downstream from a bifurcation.Biorheology 26:907–920, 1989.

    PubMed  CAS  Google Scholar 

  4. Cokelet, G. R. The rheology and tube flow of blood. In: Handbook of bioengineering, edited by R. Skalak and S. Chien. New York: McGraw Hill, 1987, pp. 14.1–14.17.

    Google Scholar 

  5. Cokelet, G. R., and H. L. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.Circ. Res. 68:1–17, 1991.

    PubMed  CAS  Google Scholar 

  6. Desjardins, C., and B. R. Duling. Microvessel hematocrit: measurement and implications for capillary oxygen transport.Am. J. Physiol. 252:H494-H503, 1987.

    PubMed  CAS  Google Scholar 

  7. Diana, J. N., and C. A. Shadur. Effect of arterial and venous pressure on capillary pressure and vascular volume.Am. J. Physiol. 225:637–650, 1973.

    PubMed  CAS  Google Scholar 

  8. Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin Fahraeus: evolution of his concepts in cardiovascular physiology.Am. J. Physiol. 257:H1005-H1015, 1989.

    PubMed  CAS  Google Scholar 

  9. House, S. D., and P. C. Johnson. Diameter and blood flow of skeletal muscle venules during local flow regulation.Am. J. Physiol. 250:H828-H837, 1986.

    PubMed  CAS  Google Scholar 

  10. House, S. D., and H. H. Lipowsky. Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat.Microvasc. Res. 34:363–379, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Ivanov, K. P., Y. I. Levkovitch, E. P. Vovenko, and N. A. Maltsev. Separate flows of erythrocytes with different degree of oxygenation in blood vessels.Sechenov Physiol. J. USSR 76:338–344, 1990.

    CAS  Google Scholar 

  12. Johnson, P. C., M. Cabel, H. J. Meiselman, and A. S. Popel. Contribution of red cell aggregation to venous resistance in skeletal muscle.Biorheology 32:167, 1995.

    Article  Google Scholar 

  13. Levtov, V. A., S. A. Regirer, and N. Kh. Shadrina. On red blood cell aggregation. In: Contemporary problems of biomechanics, edited by G. G. Chernyi and S. A. Regirer. Boca Raton: CRC Press, 1990, pp. 55–74.

    Google Scholar 

  14. Lipowsky, H. H. Mechanics of blood flow in the microcirculation. In: Handbook of bioengineering, edited by R. Skalak and S. Chien. New York: McGraw Hill, 1987, pp. 18.1–18.25.

    Google Scholar 

  15. Murata, T., and T. W. Secomb. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes.Biorheology 26:247–259, 1989.

    PubMed  CAS  Google Scholar 

  16. Ong, J., G. Enden, and A. S. Popel. Converging three dimensional Stokes flow of two fluid in a T-type bifurcation.J. Fluid Mech. 270:51–71, 1994.

    Article  Google Scholar 

  17. Popel, A. S., and G. Enden. Analytical solution for steady flow of Quemada fluid in a circular tube.Rheol. Acta 32: 422–426, 1993.

    Article  CAS  Google Scholar 

  18. Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit.Am. J. Physiol. 263:H1770-H1778, 1992.

    PubMed  CAS  Google Scholar 

  19. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo.Circ. Res. 75:904–915, 1994.

    PubMed  CAS  Google Scholar 

  20. Quemada D. Blood rheology and its implications in flow of blood. In: Arteries and arterial blood flow; biological and physiological aspects, edited by C. M. Rodkiewicz. New York: Springer-Verlag, 1983, pp. 1–27.

    Google Scholar 

  21. Reinke, W., P. C. Johnson, and P. Gaehtgens. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 μm diameter.Circ Res. 59:124–132, 1986.

    PubMed  CAS  Google Scholar 

  22. Reinke, W., P. Gaehtgens, and P. C. Johnson. Blood viscosity in small tubes: effect of shear rate on aggregation and sedimentation.Am. J. Physiol. 253:H540-H547, 1987.

    PubMed  CAS  Google Scholar 

  23. Sato, M., and N. Ohshima. Effect of wall shear rate on thrombogenesis in microvessels of the rat mesentery.Circ. Res. 66:941–949, 1990.

    PubMed  CAS  Google Scholar 

  24. Schmid-Schoenbein, G. W., Y. C. Fung, and B. W. Zweifach. Vascular endothelium-leukocyte interaction.Circ. Res. 36:173–184, 1975.

    PubMed  CAS  Google Scholar 

  25. Schmid-Schoenbein, H. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation.Intern. Rev. Physiol. 9:1–62, 1976.

    Google Scholar 

  26. Secomb, T. W., and A. W. El-Kareh. A model for motion and sedimentation of cylindrical red cell aggregates during slow blood flow in narrow horizontal tubes.J. Biomech. Eng. 116:243–249, 1994.

    PubMed  CAS  Google Scholar 

  27. Soutani, M., Y. Suzuki, N. Tateishi, and N. Maeda. Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation.Am. J. Physiol. 268:H1959-H1965, 1995.

    PubMed  CAS  Google Scholar 

  28. Tateishi, N., Y. Suzuki, M. Soutani, and N. Maeda, Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell free layer and flow resistance.J. Biomech. 27:1119–1125, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Tutty, O. R. Flow in a tube with a small side branch.J. Fluid Mech. 191:79–109, 1988.

    Article  Google Scholar 

  30. Vanhoutte, P. M. Role of the veins in the circulation.Acta Cardiol. 36:239–248, 1981.

    PubMed  CAS  Google Scholar 

  31. Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules.Am. J. Physiol. 262:H1217-H1223, 1992.

    PubMed  CAS  Google Scholar 

  32. Yamaguchi, S., T. Yamakura, and H. Niimi. Cell-free plasma layer in cerebral microvessels.Biorheology 29:251–260, 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B., Enden, G. & Popel, A.S. Stratified multiphase model for blood flow in a venular bifurcation. Ann Biomed Eng 25, 135–153 (1997). https://doi.org/10.1007/BF02738545

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738545

Key words

Navigation