Skip to main content
Log in

Mapping location of excitation during magnetic stimulation: Effects of coil position

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We determined the location of excitation for different positions of a round and butterfly coil duringin vitro magnetic stimulation of cut peripheral nerves. We analyzed the conditions under which excitation occurs, either at the termination or at the peak of the field gradients (first spatial derivative of the electric field). These results were then compared to predictions about the location of excitation sites from a theoretical model of magnetic stimulation of finite neuronal structures. Excitation along a straight nerve occurred at terminations when 1) a coil was positioned close to the end of a nerve (at least one diameter length from the end), 2) a nerve ended in a finite terminating impedance much greater than the axial resistance of the nerve, 3) the induced electric field was of sufficient magnitude, pointing in a direction away from the axis of a nerve. Excitation occurred at the negative peak of the field gradients along a nerve when 1) a coil was positioned far away from the ends of a nerve, 2) there were no geometric or volume conductor inhomogeneities around a nerve, and 3) it was of sufficient magnitude. Threshold strengths for excitation at terminations were significantly lower than that for field gradient excitation and comparable to that due to geometric and volume conductor inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amassian, V. E., L. Eberle, P. J. Maccabee, and R. Q. Cracco. Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation.Electroencephalogr. Clin. Neurophysiol. 85:291–301, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Amassian, V. E., P. J. Maccabee, R. Q. Cracco, J. B. Cracco, M. Somasundaram, J. C. Rothwell, L. Eberle, K. Henry, and A. P. Rudell. The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation.Electroencephalogr. Clin. Neurophysiol. 93:21–26, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Basser, P. J., and B. J. Roth. Stimulation of a myelinated nerve axon by electromagnetic induction.Med. Biol. Eng. Comput. 29:261–268, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Britton, T. C., B. Meyer, J. Herdmann, and R. Benecke. Clinical use of the magnetic stimulator in the investigation of peripheral conduction time.Muscle Nerve 13:396–406, 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, D., and B. N. Cuffin. Developing a more focal magnetic stimulator. Part I: Some basic principles.J. Clin. Neurophysiol. 8:102–111, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Cros, D., T. J. Day, and B. T. Shanani, Spatial dispersion of magnetic stimulation in peripheral nerves.Muscle Nerve 13: 1076–1082, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Davey, K., C. H. Cheng, and C. M. Epstein. Prediction of magnetically induced electric fields in biological tissue.IEEE Trans. Biomed. Eng. 38:418–422, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Durand, D., A. S. Ferguson, and T. Dalbasti. Effects of surface boundary on neuronal magnetic stimulation.IEEE Trans. Biomed. Eng. 37:588–597, 1992.

    Google Scholar 

  9. Eaton, H. The electric field induced in a spherical volume conductor from arbitrary coils: application to magnetic stimulation and MEG.Med. Biol. Eng. Comput. 30:433–440, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Emery, D. G., J. H. Lucas, and G. W. Gross. The sequence of ultrastructural changes in cultured neurons after dendritic transection.Exp. Brain Res. 67:41–51, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Epstein, C. M., D. G. Schwartzberg, K. R. Davey, and D. B. Sudderth. Localizing the site of magnetic brain stimulation in humans.Neurology 40:666–670, 1990.

    PubMed  CAS  Google Scholar 

  12. Esselle, K. P., and M. A. Stuchly. Quasi-static electric field in a cylindrical volume conductor induced by external coils.IEEE Trans. Biomed. Eng. 41:151–158, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Estrem, S. A., T. McCormack, S. S. Haghighi, and T. Potter. A comparison of magnetic and electrical stimulation of facial nerve at the cerebello-pontine angle in the dog.Electroencephalogr. Clin. Neurophysiol. 75:558–560, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Grandori, F., and P. Ravazzani. Magnetic stimulation of the motor cortex—theoretical considerations.IEEE Trans. BME 38:180–191, 1991.

    Article  CAS  Google Scholar 

  15. Krause, T. L., H. M. Fishman, M. L. Ballinger, and G. D. Bittner. Extent and mechanism of sealing in transected giant axon of squid and earthworms.J. Neurosci. 14:6638–6651, 1994.

    PubMed  CAS  Google Scholar 

  16. Krause, T. L., Y. Magarshank, H. M. Fishman, and G. D. Bittner. Membrane potential and input resistance are ambiguous measures of sealing of transected cable-like structures.Biophys. J. 68:795–799, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Liang, D. H., G. T. A. Kovacs, C. W. Storment, and R. L. White. A method for evaluating the selectivity of electrodes implanted for nerve stimulation.IEEE Trans. Biomed. Eng. 38:443–449, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Maccabee, P. J., V. E. Amassian, L. Eberle, A. Rudell, R. Q. Cracco, K. S. Lai, and M. Somasundaram. Measurement of the electric field induced into inhomogenous volume conductors by magnetic coils: applications to human spinal geometry.Electroencephalogr. Clin. Neurophysiol. 81:224–237, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Maccabee, P. J., V. E. Amassian, L. Eberle, A. P. Rudell, and R. Q. Cracco. The magnetic coil activates amphibian and primate nerve in-vitro at two sites and selectively at a bend.J. Physiol. (Lond.) 446:208P, 1992.

    Google Scholar 

  20. Maccabee, P. J., V. E. Amassian, L. P. Eberle, and R. Q. Cracco. Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation.J. Physiol. (Lond.) 460:201–219, 1993.

    CAS  Google Scholar 

  21. McRobbie, D. Design and instrumentation of a magnetic nerve stimulator.J. Phys. E. Sci. Instrum. 18:74–78, 1985.

    Article  Google Scholar 

  22. Murray, N. M. F. The clinical usefulness of magnetic cortical stimulation.Electroencephalogr. Clin. Neurophysiol. 85:81–85, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Nagarajan, S. S., and D. Durand. Determination of excitation sites during magnetic stimulation of nerve fibers. 14th Annual International Conference of the IEEE-EMBS, Vol. 4, 1992, pp. 1426–1427.

    Google Scholar 

  24. Nagarajan, S. S., D. Durand, and E. N. Warman. Effects of induced electric fields on finite neuronal structures: a stimulation study.IEEE Trans. Biomed. Eng. 40:1175–1188, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Nagarajan, S. S., and D. M. Durand. 1995. Analysis of magnetic stimulation of a concentric axon in a nerve bundle.IEEE Trans. Biomed. Eng. 42:926–933.

    Article  PubMed  CAS  Google Scholar 

  26. Nagarajan, S. S., D. M. Durand, B. J. Roth, and R. S. Wijesinghe. Magnetic stimulation of axons in a nerve bundle: effects of current distribution in the nerve bundle.Ann. Biomed. Eng. 23:116–126, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Naples, G. G., J. T. Mortimer, A. Scheiner, and J. Sweeney, A spiral nerve cuff electrode for peripheral nerve stimulation.IEEE Trans. Biomed. Eng. 35:905–916, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Nilsson, J., M. Panizza, B. J. Roth, P. J. Basser, L. G. Cohen, G. Caruso, and M. Hallett. Determining the site of stimulation during magnetic stimulation of a peripheral nerve.Electroencephalogr. Clin. Neurophysiol. 85:253–264, 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Pascual-Leone, A., D. Nguyet, L. G. Cohen, J. P. Brasil-Neto, A. Camerota, and M. Hallett. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills.J. Neurophysiol. 74:1037–1045, 1995.

    PubMed  CAS  Google Scholar 

  30. Plonsey, R., and R. C. Barr. Electric field stimulation of excitable tissue.IEEE Trans. Biomed. Eng. 42:329–336, 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Ranck, J. B. J. Which elements are excited in electrical stimulation of mammalian central nervous system: a review.Brain Res. 98:417, 1975.

    Article  PubMed  Google Scholar 

  32. Rattay, F. Analysis of models for extracellular fiber stimulation.IEEE Trans. Biomed. Eng. 36:676–682, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Ravnborg, M., M. Blinkenberg, and K. Dahl. Significance of magnetic coil position in peripheral motor nerve stimulation.Muscle Nerve 13:681–686, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Reilly, J. P. Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields.Med. Biol. Eng. Comput. 27:101–110, 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Roth, B. J., and P. J. Basser. A model for stimulation of a nerve fiber by electromagnetic induction.IEEE Trans. Biomed. Eng. 37:588–597, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Roth, B. J., L. G. Cohen, and M. Hallett. The electric field induced during magnetic stimulation.Electroencephalogr. Clin. Neurophysiol. Suppl. 43:268–278, 1991.

    Google Scholar 

  37. Roth, B. J., L. G. Cohen, M. Hallett, W. Friauf, and P. J. Basser. A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve.Muscle Nerve 13:734–741, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Roth, B. J., P. J. Maccabee, L. P. Eberle, V. E. Amassian, M. Hallett, J. Cadwell, G. D. Anselmi, and G. T. Tatarian. In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve.Electroencephalogr. Clin. Neurophysiol. 93:68–74, 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Spira, M. E., D. Benbassat, and A. Dormann. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis.J. Neurobiol. 24:300–316, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Tofts, P. S., and N. M. Branston. The measurement of electric field, and the influence of surface charge, in magnetic stimulation.Electroencephalogr. Clin. Neurophysiol. 81:238–239, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, S.S., Durand, D.M. & Hsuing-Hsu, K. Mapping location of excitation during magnetic stimulation: Effects of coil position. Ann Biomed Eng 25, 112–125 (1997). https://doi.org/10.1007/BF02738543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738543

Keywords

Navigation